簡易檢索 / 詳目顯示

研究生: 楊紹威
Shao-wei Yang
論文名稱: 經酸蝕及膠原蛋白/幾丁聚醣複合薄膜塗佈之鈦金屬於骨再生之探討
Bone regeneration on the acid-etched titanium with collagen/chitosan coating
指導教授: 洪伯達
Po-Da Hong
傅鍔
Earl-Fu
口試委員: 高震宇
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 鈦金屬酸蝕膠原蛋白幾丁聚醣
外文關鍵詞: Titanium, acid-etched, collagen, chitosan
相關次數: 點閱:283下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據文獻記載,具多孔結構鈦金屬植體相較於平坦表面鈦金屬植體對於短時間細胞貼附及長時間於表面之穩定性均有改善的作用。本研究中,除了於表面製造多孔結構,另於表面塗佈上膠原蛋白/幾丁聚醣複合薄膜;其目的在於膠原蛋白可提供支架結構上之強度、並有加速骨細胞分化之功能,幾丁聚醣可誘導骨組織生長極具凝血及抗菌;並於細胞實驗中(in vitro)探討骨母細胞(osteoblasts)貼覆於鈦金屬植體後,於植體表面之貼附、生長及分生情形;動物實驗(in vivo)則是探討此一經表面改質後之植體植入動物體後,骨組織於植體周遭之骨癒合、新生骨於表面生成情形。期許經此一表面改質後之植體,相較於傳統植體,在加速骨組織於植體周遭再生、癒合的時間、骨整合之程度均有改善的作用,近一步希望此技術能應用於未來之植牙用植體或一般手術用植體,減少患者之痛苦及縮短患部癒合之時間。


According to research, the short-term adhesion and long-term stability on surface of porous structural implants are much better than smooth ones. In this study, the surface were coated collagen/chitosan complex membrane in addition to surface porous structure. Collagen provided scaffold strength and accompanies a function that accelerated the differentiation of osteoblasts. Chitosan with the purpose of guiding bone tissue growth, hemoglutination, and antibacterial. The adhesion, proliferation, differentiation of osteoblasts on titanium implants were tested in vitro; the bone healing and new-bone formation around the implants after implanting the surface-modified Ti plates into animal bodies were discussed in vivo. We expect that the time of bone regeneration , the bone integration and bone healing around implants could be improve by the surface-modification treatment. Moreover, with the purpose that reduced the suffering of patients and shortened the bone healing time, we hope this treatment could be introduced to surgical or dental implants soon after.

中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 動機 3 第二章 文獻回顧 4 2.1 鈦金屬 4 2.2 表面改質 6 2.2.1 表面形貌改質 6 2.2.2 表面生化改質 7 2.3 幾丁質與幾丁聚醣 9 2.4 幾丁質特性 11 2.5 幾丁聚醣的特性 11 2.6 膠原蛋白 14 第三章 實驗方法 15 3.1 實驗材料與設備 15 3.1.1 實驗材料 15 3.1.2 實驗設備 15 3.2 實驗步驟與方法(見圖3-1) (IN-VITRO) 16 3.2.1 Ti 試片製作 16 3.2.2 實驗分組 17 3.2.3 細胞培養 17 3.2.4 檢測方法 17 3.3 實驗步驟與方法(IN-VIVO) 25 3.3.1 Ti 試片製作 25 3.3.2 動物實驗手術 26 3.3.3 檢測方法 27 第四章 結果與討論 30 4.1 經處理後之TI金屬表面形貌分析 30 4.2 造骨細胞培養於不同處理TI表面之形貌分析 32 4.3 造骨細胞培養於不同處理TI金屬之細胞活性分析 35 4.4 造骨細胞培養於不同處理TI金屬之鹼性磷酸脢活性分析 37 4.5 細胞RNA表現分析(RT-PCR) 39 4.6 細胞RNA相對表現統計分析 40 4.7 硬組織切片螢光標本分析 41 4.8 硬組織切片螢光標本分析(孔洞處) 43 4.9 硬組織切片螢光標本數據統計 45 4.10 硬組織切片化學染色分析 46 4.11 硬組織切片化學染色數據統計 49 第五章 結論 50 參考資料 51

[1] Nishiguchi, S., Nakamura T., Kobayashi M., Kim H. M., Miyaji F., Kokubo T., "The effect of heat treatment on bone-bonding ability of alkali-treated titanium." Biomaterials, Vol. 20, No. 5, pp. 491-500. (1999)
[2] Jonasova, L., Muller F. A., Helebrant A., Strnad J., Greil P., "Biomimetic apatite formation on chemically treated titanium." Biomaterials, Vol. 25, No. 7-8, pp. 1187-1194. (2004)
[3] Sader, M. S., Balduino A., Soares Gde A., Borojevic R., "Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation." Clin Oral Implants Res, Vol. 16, No. 6, pp. 667-675. (2005)
[4] Boyan, B. D., Lossdorfer S., Wang L., et al., "Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies." Eur Cell Mater, Vol. 6, No., pp. 22-27. (2003)
[5] Le Guehennec, L., Soueidan A., Layrolle P., Amouriq Y., "Surface treatments of titanium dental implants for rapid osseointegration." Dent Mater, Vol. 23, No. 7, pp. 844-854. (2007)
[6] Zinger, O., Anselme K., Denzer A., et al., "Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography." Biomaterials, Vol. 25, No. 14, pp. 2695-2711. (2004)
[7] Chehroudi, B., McDonnell D., Brunette D. M., "The effects of micromachined surfaces on formation of bonelike tissue on subcutaneous implants as assessed by radiography and computer image processing." J Biomed Mater Res, Vol. 34, No. 3, pp. 279-290. (1997)
[8] Papalexiou, V., Novaes A. B., Jr., Grisi M. F., Souza S. S., Taba M., Jr., Kajiwara J. K., "Influence of implant microstructure on the dynamics of bone healing around immediate implants placed into periodontally infected sites. A confocal laser scanning microscopic study." Clin Oral Implants Res, Vol. 15, No. 1, pp. 44-53. (2004)
[9] Popat, K. C., Leoni L., Grimes C. A., Desai T. A., "Influence of engineered titania nanotubular surfaces on bone cells." Biomaterials, Vol. 28, No. 21, pp. 3188-3197. (2007)
[10] Kubota, S., Johkura K., Asanuma K., et al., "Titanium oxide nanotubes for bone regeneration." J Mater Sci Mater Med, Vol. 15, No. 9, pp. 1031-1035. (2004)
[11] Chou, L., Firth J. D., Uitto V. J., Brunette D. M., "Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts." J Biomed Mater Res, Vol. 39, No. 3, pp. 437-445. (1998)
[12] Cooper, L. F., Zhou Y., Takebe J., et al., "Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants." Biomaterials, Vol. 27, No. 6, pp. 926-936. (2006)
[13] Puleo, D. A., Nanci A., "Understanding and controlling the bone-implant interface." Biomaterials, Vol. 20, No. 23-24, pp. 2311-2321. (1999)
[14] Lutz, R., Srour S., Nonhoff J., Weisel T., Damien C. J., Schlegel K. A., "Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration." Clin Oral Implants Res, Vol. 21, No. 7, pp. 726-734.
[15] Sauberlich, S., Klee D., Richter E. J., Hocker H., Spiekermann H., "Cell culture tests for assessing the tolerance of soft tissue to variously modified titanium surfaces." Clin Oral Implants Res, Vol. 10, No. 5, pp. 379-393. (1999)
[16] Salasznyk, R. M., Williams W. A., Boskey A., Batorsky A., Plopper G. E., "Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells." J Biomed Biotechnol, Vol. 2004, No. 1, pp. 24-34. (2004)
[17] Muster, D., Humbert P., Mosser A., "Surface physics methods and in vitro bone-biomaterial interface control." Biomaterials, Vol. 11, No., pp. 57-62. (1990)
[18] Anonymous, "[Nickel-titanium: a metal with memory. Various possibilities with memory-effects in medicine and technology]." Krankenpfl J, Vol. 21, No. 5, pp. 4-5. (1983)
[19] Glowacki, J., Mizuno S., "Collagen scaffolds for tissue engineering." Biopolymers, Vol. 89, No. 5, pp. 338-344. (2008)
[20] Kundu, A. K., Putnam A. J., "Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells." Biochem Biophys Res Commun, Vol. 347, No. 1, pp. 347-357. (2006)
[21] Baitukalova, T. A., Bogoslovskaia O. A., Ol'khovsakaia I. P., et al., "[Regenerating activity and antibacterial effect of low-molecular-weight chitosan]." Izv Akad Nauk Ser Biol, Vol., No. 6, pp. 659-663. (2005)
[22] Kim, I. Y., Seo S. J., Moon H. S., et al., "Chitosan and its derivatives for tissue engineering applications." Biotechnol Adv, Vol. 26, No. 1, pp. 1-21. (2008)
[23] Aoyagi, S., Onishi H., Machida Y., "Novel chitosan wound dressing loaded with minocycline for the treatment of severe burn wounds." Int J Pharm, Vol. 330, No. 1-2, pp. 138-145. (2007)
[24] Di Martino, A., Sittinger M., Risbud M. V., "Chitosan: a versatile biopolymer for orthopaedic tissue-engineering." Biomaterials, Vol. 26, No. 30, pp. 5983-5990. (2005)
[25] Filiaggi, M. J., Coombs N. A., Pilliar R. M., "Characterization of the interface in the plasma-sprayed HA coating/Ti-6Al-4V implant system." J Biomed Mater Res, Vol. 25, No. 10, pp. 1211-1229. (1991)
[26] 劉鍾順, "幾丁聚醣整理後之織物的抗菌與吸濕複合機能研究." 國立台灣科技大學高分子工程所碩士論文. (1995).
[27] Cochran, D. L., Schenk R. K., Lussi A., Higginbottom F. L., Buser D., "Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible." J Biomed Mater Res, Vol. 40, No. 1, pp. 1-11. (1998)
[28] Wennerberg, A., Hallgren C., Johansson C., Danelli S., "A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses." Clin Oral Implants Res, Vol. 9, No. 1, pp. 11-19. (1998)
[29] Gotfredsen, K., Wennerberg A., Johansson C., Skovgaard L. T., Hjorting-Hansen E., "Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits." J Biomed Mater Res, Vol. 29, No. 10, pp. 1223-1231. (1995)
[30] Wennerberg, A., Albrektsson T., Andersson B., Krol J. J., "A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies." Clin Oral Implants Res, Vol. 6, No. 1, pp. 24-30. (1995)
[31] Becker, W., Becker B. E., Ricci A., et al., "A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures." Clin Implant Dent Relat Res, Vol. 2, No. 3, pp. 159-165. (2000)
[32] Albrektsson, T., Wennerberg A., "The impact of oral implants - past and future, 1966-2042." J Can Dent Assoc, Vol. 71, No. 5, pp. 327. (2005)
[33] Davarpanah, M., Martinez H., Etienne D., et al., "A prospective multicenter evaluation of 1,583 3i implants: 1- to 5-year data." Int J Oral Maxillofac Implants, Vol. 17, No. 6, pp. 820-828. (2002)
[34] Conner, K. A., Sabatini R., Mealey B. L., Takacs V. J., Mills M. P., Cochran D. L., "Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model." J Periodontol, Vol. 74, No. 5, pp. 658-668. (2003)
[35] Brett, P. M., Harle J., Salih V., et al., "Roughness response genes in osteoblasts." Bone, Vol. 35, No. 1, pp. 124-133. (2004)
[36] Kammerer, P. W., Gabriel M., Al-Nawas B., Scholz T., Kirchmaier C. M., Klein M. O., "Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro." Clin Oral Implants Res, Vol., No.
[37] Massaro, C., Rotolo P., De Riccardis F., et al., "Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition." J Mater Sci Mater Med, Vol. 13, No. 6, pp. 535-548. (2002)
[38] Park, J. Y., Davies J. E., "Red blood cell and platelet interactions with titanium implant surfaces." Clin Oral Implants Res, Vol. 11, No. 6, pp. 530-539. (2000)
[39] Davies, J. E., "Mechanisms of endosseous integration." Int J Prosthodont, Vol. 11, No. 5, pp. 391-401. (1998)
[40] Trisi, P., Lazzara R., Rao W., Rebaudi A., "Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces." Int J Periodontics Restorative Dent, Vol. 22, No. 6, pp. 535-545. (2002)
[41] Trisi, P., Marcato C., Todisco M., "Bone-to-implant apposition with machined and MTX microtextured implant surfaces in human sinus grafts." Int J Periodontics Restorative Dent, Vol. 23, No. 5, pp. 427-437. (2003)
[42] Cochran, D. L., Buser D., Ten Bruggenkate C. M., et al., "The use of reduced healing times on ITIR implants with a sandblasted and acid-etched (SLA) surface." Clinical Oral Implants Research, Vol. 13, No. 2, pp. 144-153. (2002)
[43] Wikipedia, the free encyclopedia
[44] Madihally, S. V., Matthew H. W., "Porous chitosan scaffolds for tissue engineering." Biomaterials, Vol. 20, No. 12, pp. 1133-1142. (1999)
[45] Asz籀di, A., Legate K. R., Nakchbandi I., F瓣ssler R., "What Mouse Mutants Teach Us About Extracellular Matrix Function." Annual Review of Cell and Developmental Biology, Vol. 22, No. 1, pp. 591-621. (2006)
[46] Grant, M. E., "From collagen chemistry towards cell therapy - a personal journey." Int J Exp Pathol, Vol. 88, No. 4, pp. 203-214. (2007)
[47] Veit, G., Kobbe B., Keene D. R., Paulsson M., Koch M., Wagener R., "Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain." J Biol Chem, Vol. 281, No. 6, pp. 3494-3504. (2006)
[48] Canty, E. G., Kadler K. E., "Procollagen trafficking, processing and fibrillogenesis." J Cell Sci, Vol. 118, No. Pt 7, pp. 1341-1353. (2005)
[49] Smith, K., Rennie M. J., "New approaches and recent results concerning human-tissue collagen synthesis." Curr Opin Clin Nutr Metab Care, Vol. 10, No. 5, pp. 582-590. (2007)
[50] Hashimoto, Y., Kawashima M., Hatanaka R., et al., "Cytocompatibility of calcium phosphate coatings deposited by an ArF pulsed laser." J Mater Sci Mater Med, Vol. 19, No. 1, pp. 327-333. (2008)
[51] Wu, Y., Zitelli J. P., TenHuisen K. S., Yu X., Libera M. R., "Differential response of Staphylococci and osteoblasts to varying titanium surface roughness." Biomaterials, Vol. 32, No. 4, pp. 951-960.

QR CODE