簡易檢索 / 詳目顯示

研究生: 蔡嘉泓
CHIA-HUNG,TSAI
論文名稱: 製備新型具乳酸寡聚物之生物相容性光固化材料及其性質研究分析
Synthesis of New Biocompatible UV-Curable Materials with Lactic acid Oligomers and Research for Their Properties
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 143
中文關鍵詞: 乳酸寡聚物甲基丙烯酸
外文關鍵詞: Lactic acid, Oligomers
相關次數: 點閱:334下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成出不同單體數之乳酸寡聚物及一系列新型具甲基丙烯酸酯之生物相容性光固化單體,透過具有環氧基團之結構可於鹼性環境下,將環氧基團開環並與去離子水和其他具羧酸基團之生物相容性單體進行酯化反應,藉由改變乳酸寡聚物之單體數目以及交聯劑比例,以合成出具不同特性之新型具生物相容性光固化單體,再以核磁共振光譜圖譜(NMR)、凝膠滲透儀(GPC)以及質譜儀(MASS)鑑定其單體數目以及分子結構,接著於此三種新型光固化單體加入TPO光起始劑, 並利用數位式旋轉黏度計、傅立葉轉換紅外線光譜儀(FTIR)、萬能材料試驗機、熱重分析儀(TGA)、示差掃描熱分析儀(DSC)、接觸角量測儀、平均膨潤動力分析法與細胞毒性測試(MTT Assay)分析各新型光固化單體之黏度及光固化後之聚合程度、機械強度、熱穩定、表面親疏水性、平均膨潤度與速率及細胞毒性等性質。


    In this research, we synthesized the lactic acid oligomers with different number of monomers and a series of new biocompatible UV-curable materials with special compound have been synthesized. Under basic conditions, the epoxide group of glycidyl methacrylate was opened and reacted with deionized water or other monomers that have carboxylic acid by esterification. By varying the number of monomers of the lactic acid oligomer and the proportion of the crosslinker, we used the nuclear magnetic resonance spectroscopy(NMR), Gel Permeation Chromatography(GPC) and the mass spectroscopy (MASS) to identify the structures of monomers. Then we used TPO as photoinitiator and analyze their properties, such as viscosity, the degree of polymerization, mechanical strength, thermal stability, hydrophilicity or hydrophobicity on the surface, swelling ratio, swelling rate and cytotoxicity by viscometer, FTIR, Universal Testing Machine, TGA, DSC, Contact Angle, swelling test and MTT assay.

    摘要 I Abstract II 圖目錄 VII 表目錄 XI Scheme目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 3D列印簡介 2 1-2-1 3D 列印技術的原理 5 1-2-2 3D列印製造的種類 7 1-2-3 3D列印未來展望 17 1-3 紫外光固化型高分子簡介 18 1-3-1 紫外光固化技術的特點 20 1-3-2 紫外光固化型高分子的種類 21 1-3-3 壓克力型之紫外光固化高分子 21 1-3-4 壓克力型之紫外光固化高分子反應機制 22 1-3-5 環氧樹脂型之紫外光固化高分子 25 1-3-6 壓克力型與環氧樹脂型之紫外光固化高分子比較 26 1-3-7 聚乳酸(PLA)與ABS之比較 27 1-4 影響光固化速率之因素 28 1-4-1 光源強度 28 1-4-2 光源波長與種類 29 1-4-3 光起始劑種類及濃度 31 1-4-4 熱效應 31 1-4-5 樣品厚度 31 1-5 合成反應之文獻回顧 32 1-6 研究動機及目的 34 第二章 實驗部分 35 2-1 實驗儀器 35 2-2 實驗藥品與溶劑 37 2-3微電腦數位錐板式黏度計的量測方法 38 2-4 萬能材料試驗機量測方法 38 2-5 傅立葉紅外線光譜儀量測方法 38 2-6 熱重分析儀量測方法 39 2-7 示差掃描熱分析儀量測方法 40 2-8 平均膨潤動力量測方法 40 2-9 接觸角量測方法 41 2-10膠體滲透層析儀 41 2-11細胞毒性量測方法 42 2-12 各化合物結構分子式 45 2-13 實驗步驟 46 第三章 結果與討論 50 3-1 樣品合成與探討 50 3-2 黏度性質分析 52 3-2-1 不同溫度下各單體年度性質分析及討論 52 3-3 傅立葉轉換紅外線光譜儀(FTIR)分析 55 3-3-1 各單體經照光固化前與後之FTIR光譜分析及比較 56 3-4 機械強度性質分析 65 3-4-1 拉伸試片之製備 66 3-4-2 各單體經固化後之機械性質分析與比較 68 3-5 熱重分析儀(TGA)分析 72 3-5-1各樣品之熱裂解溫度(Td10%)與焦炭殘餘量(R700)分析 72 3-6 示差掃描熱分析儀(DSC)分析 82 3-6-1 各單體經固化後之玻璃轉移溫度(Tg)與比熱(Cp)分析 82 3-7 表面接觸角(Contact Angle)分析 88 3-7-1 接觸角試片之製備 89 3-7-2 各單體固化後之平均接觸角分析與比較 90 3-8 平均膨潤(Swelling)動力分析 93 3-8-1 各單體固化後之膨潤度分析與比較 94 3-9 細胞毒性(MTT Assay)分析 100 3-9-1 各光固化後材料之細胞毒性分析與比較 101 第四章 結論 103 4-1 結論 103 4-2 未來展望 106 第五章 參考文獻 107 附錄 光譜資料 113

    1. Printing, D., What You Need to Know. 2013.
    2. Hull, C. W., Apparatus for production of three-dimensional objects by stereolithography 1986.
    3. Freedman, D. H., Layer by Layer.” Technology Review 115.1. 2012.
    4. Crump, S., Apparatus and method for creating three-dimensional objects 1989.
    5. Stafford, R. E., SLM spectrometer US 5504575 A. 1996.
    6. Englert, C. R., Compression assembly of spatial heterodyne spectrometer (SHS). 2009.
    7. 謝明珊, 3D列印掀印客製化風潮. 2017-04-07.
    8. 林宗德, 新彈性層式及噴霧式製程與線上影像監控之快速原型機研發”, 台灣科技大學機械工程研究所碩士論文. 1997.
    9. 羅緗綸, 生醫躍進. 2016-07-15.
    10. 李幸宜, 工業技術與資訊月刊284期. 2015-06-30.
    11. Greenemeier, L., 3D 列印你的夢想. 科學人,136, 2013.
    12. 林鼎勝, 三度空間科技:3D列印的發展現況. 2014/11/04.
    13. 賴宏仁、曹申, 金屬粉體材料在3D列印技術之發展與應用. 2014.
    14. K.V. Wang , A. H., “The review of additive manufacturing.” ISRN Mechanical Engineering, Vol. 2012, P10. 2012.
    15. Anderson),連育德編譯, 克. 安. C., 自造者時代. 天下文化出版社, 2013.
    16. C. K. Chua, K. F. L., 黃台生, 快速原型-原理與製造上的應用. 六合出版社, 1998.
    17. Mitcham, L. D., and William E. Nelson, Stereolithographic apparatus and method of use. U.S. Patent No. 5,247,180, 1993.
    18. 弋丰, 藍., 奇異積極在航空領域發展 3D 列印利基. 科技新報 2016.
    19. 洪聖壹, Project Ara 模組手機. 2014.
    20. 實威國際, 3D列印時代來襲. 2014.
    21. 張豐志, 應用高分子手冊. 五南圖書 2003, 57-72.
    22. 楊呈勳, 在 UV 製程中如何硬化完全硬化. 2004.
    23. 陳奇毅, UV Curable PU 樹脂於不同波長之反應性探討. 國立臺北科技大學有機高分子研究所碩士論文 2002.
    24. 張永漢, 化工技術. 第六十九期, 1998.
    25. 魏茂國, 紫外光成型技術探討與應用. 國立東華大學材料科學與工程學研究所博士論文 2005.
    26. 游恩華, 紫外線成型技術探討與應用. 2005.
    27. 彭志成, 紫外光可硬化之聚胺酯. 國立臺灣大學化學工程研究所碩士論文 1998.
    28. Kindernay, J., Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. Journal of Photochemistry and Photobiology A:Chemistry, vol. 151 2002, 229-236.
    29. Wei, H., Photopolymerization kinetics of dendritic poly(ether-amide)s. 2001.
    30. Perera, Development of formulations based on acrylate monomers for optical cable applications. 2001.
    31. 石井孝雄, 塗裝與塗料. 完善出版社 1975, 138.
    32. Bowman, C. N., Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. 1995.
    33. Ausiello, P., Effect of adhesive layer properties on stress distribution in composite restorations—a 3D finite element analysis. 2002.
    34. Quick, D. J., Polymerizations of multifunctional anhydride monomers to form highly cross-linked degradable networks. 2001.
    35. Noort, R. v., The future of dental devices is digital. 2012.
    36. Fielding, G. A., Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. 2012.
    37. Andrzejewska, Temperature effects on the photoinitiated polymerization of diacrylates. 1996.
    38. Decker, C., A new class of highly reactive acrylic-monomers. 1990.
    39. Zarone, F., Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: A 3D-finite element analysis. 2005.
    40. Moussa, K., A new class of highly reactive acrylic-monomers. 507-522 1991.
    41. KA, B., Novel monovinyl methacrylic monomers containing secondary functionality for ultrarapid polymerization: Steady-state evaluation. 2004.
    42. H, L., Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems. 2005.
    43. Jansen, J. F. G. A., Effect of preorganization due to hydrogen bonding on the rate of photoinitiated acrylate polymerization. 2003.
    44. Kilambi, H., Factors affecting the sensitivity to acid inhibition in novel acrylates characterized by secondary functionalities. 2007.
    45. Kilambi, H., Deconvoluting the impact of intermolecular and intramolecular interactions on the polymerization kinetics of ultrarapid mono(meth)acrylates. 2007.
    46. Xu, T., Synthesis of Polylactide-graft-Glycidyl Methacrylate Graft Copolymer and its Application as a Coupling Agent in Polylactide/Bamboo Flour Biocomposites. 2012.
    47. Thanh, N. C., Effect of Melt Mixing Time in Internal Mixer on Mechanical Properties and Crystallization Behavior of Glycidyl Methacrylate Grafted Poly (Lactic Acid). 2015.
    48. Liu, J., Grafting of Glycidyl Methacrylate onto Poly(lactide) and Properties of PLA/Starch Blends Compatibilized by the Grafted Copolymer. 2012.
    49. Ding, J., Synthesis and Properties of Thermoplastic Poly(vinyl Alcohol)-Graft-Lactic Acid Copolymers. 2009.
    50. Nagahata, R., Microwave-Assisted Single-Step Synthesis of Poly(lactic acid) by Direct Polycondensation of Lactic Acid. 2007.
    51. Garlotta, D., A Literature Review of Poly(Lactic Acid). 2002.
    52. Su, Z., Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). 2009.
    53. Orozco, V. H., Preparation and Characterization of Poly(Lactic Acid)-g-Maleic AnhydrideþStarch Blends. 2009.

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE