簡易檢索 / 詳目顯示

研究生: Mai Ngoc Tram Anh
Anh Ngoc Tram Mai
論文名稱: 反應性雙馬來酰亞胺/氰尿酸寡聚物包覆在 LiNi0.6Co0.2Mn0.2O2 正極上以提高鋰離子電池的性能和安全性
Reactive Bismaleimide/Cyanuric Acid Oligomer Coated on LiNi0.6Co0.2Mn0.2O2 Cathode for Enhanced Lithium-ion Battery Performance and Safety
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 陳崇賢
Quoc-Thai Pham
許榮木
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 87
中文關鍵詞: 鋰離子電池安全性雙馬來酰亞胺氰尿酸低聚添加劑表面塗層
外文關鍵詞: Lithium ion battery, Safety, Bismaleimide, Cyanuric acid, Oligomeric additive, Surface coating
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池(LIB) 的安全問題與熱失控和電池起火風險有關,本研究中, LiNi0.6Co0.2Mn0.2O2 (NCM622) 正極材料通過塗覆自封端的 BMI/CA (表示為 BC) 寡聚物 (N, N'-雙馬來酰亞胺-4,4'-二苯基甲烷 (BMI) 和氰尿酸 (CA)) 進行表面改性,以提高 LIB 的安全性和循環壽命。結果表明,在 25 和 55 °C 循環後,與原始 NCM622 相比, BC@NCM622 正極材料在高溫以及高倍率性能下表現出更高的放電容量和容量保持率。電化學阻抗譜的結果表明 BC@NCM622 電池具有較低的界面阻抗和電荷轉移阻抗,這意味著 CEI 層的積累和 NCM622 的結構變化已經減少。此外,鋰離子擴散係数越高,放電速率越高的 BC@NCM622 與不含添加劑的 NCM622 相比,由於活性材料上 BC 層的覆盖,抑制了NCM 與電解液的直接相互作用,因此結構變化和/或電極表面上不希望發生的電解液分解反應得到了缓解。此外,還進行了SEM – EDX 和 XPS,以檢查含添加劑以及無添加劑的樣品表面、循環前後以及循環電極的 CEI 組成。最後,還檢測了表面改性 NCM622 正極材料的熱穩定性能,包括 TGA, 55 °C 下的儲存穩定性和 150 °C 下的加熱測試。


    The safety concern associated with the risk of thermal runaway and battery fire is known to be a pivotal issue of lithium-ion batteries (LIBs). In this work, LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials were surface-modified by coating with self-terminated BMI/CA (so-called BC) oligomers (N, N′-bismaleimide-4,4′-diphenylmethane (BMI) with cyanuric acid (CA)) for enhancing the safety and cycle life of LIBs. The findings showed that after cycling at 25 and 55 oC, compared with the pristine NCM622, the BC@NCM622 cathodes exhibited a higher discharge capacity and capacity retention, especially at high temperature, and better C-rate performance. Additionally, the EIS results present that the BC@NCM622 cells had a lower interfacial and charge transfer impedance implying that the accumulation of CEI layer and structural change of NCM622 have been reduced. Moreover, the higher Li+ diffusion coefficients at a higher discharge rate of BC@NCM622 in comparison with the NCM622 without additives could be explained by the mitigation of structural change and/or the undesired electrolyte decomposition reaction on the electrode surface owing to the coverage of the BC layer over the active materials that inhibit the direct interaction of NCM with the electrolyte. Furthermore, the SEM-EDX and XPS were also conducted to examine the surface of samples with and without additive, before and after cycling, and the CEI composition of cycled electrodes. Besides, thermal properties, including TGA, storage stability at 55 oC, and heating test at 150 oC, of the surface-modified NCM622 cathodes were examined.

    摘要 iv ABSTRACT v ACKNOWLEDGEMENT vi TABLE OF CONTENTS vii LIST OF TABLES ix LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1. Introduction 1 1.2. Objectives: 4 CHAPTER 2 LITERATURE REVIEW 5 2.1. Modification mechanism 5 2.2. Coating materials 6 CHAPTER 3 EXPERIMENTAL 13 3.1. Materials and preparation 13 3.2. Characterization of electrodes 14 3.3. Cell electrochemical and thermal property measurements 15 CHAPTER 4 RESULTS AND DISCUSSION 16 4.1. Differential scanning calorimetry 16 4.2. Morphology and structure of NCM powder 18 4.3. Cyclic voltammetry 24 4.4. Electrochemical, morphological, and structural properties at 25 °C 26 4.5. Electrochemical, morphological, and structural properties at 55 °C 40 4.6. Storage stability 54 4.7. Heating test 58 4.8. Thermogravimetric analysis and differential scanning calorimetry 61 CHAPTER 5 CONCLUSIONS 63 REFERENCES 65 APPENDIX 73

    [1] W. Li, E.M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nature Energy, 5 (2020) 26-34.
    [2] A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Droeder, Current status and challenges for automotive battery production technologies, Nature Energy, 3 (2018) 290-300.
    [3] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science, 4 (2011) 3243.
    [4] R. Marom, S.F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, Journal of Materials Chemistry, 21 (2011) 9938.
    [5] Y. Ding, Z.P. Cano, A. Yu, J. Lu, Z. Chen, Automotive Li-Ion Batteries: Current Status and Future Perspectives, Electrochemical Energy Reviews, 2 (2019) 1-28.
    [6] R. R.N, D. Bosubabu, K.B. M.G, K. Ramesha, Tuning of Ni, Mn, and Co (NMC) Content in 0.4(LiNixMnyCozO2)·0.4(Li2MnO3) toward Stable High-Capacity Lithium-Rich Cathode Materials, ACS Applied Energy Materials, 3 (2020) 10872-10881.
    [7] M.M. Thackeray, K. Amine, Layered Li–Ni–Mn–Co oxide cathodes, Nature Energy, 6 (2021) 933-933.
    [8] A. Manthiram, B. Song, W. Li, A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries, Energy Storage Materials, 6 (2017) 125-139.
    [9] Y. Cui, Y. Wang, S. Gu, C. Qian, T. Chen, S. Chen, J. Zhao, S. Zhang, An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode, Journal of Power Sources, 453 (2020) 227852.
    [10] F. Li, Y. Wang, S. Gao, P. Hou, L. Zhang, Mitigating the capacity and voltage decay of lithium-rich layered oxide cathodes by fabricating Ni/Mn graded surface, Journal of Materials Chemistry A, 5 (2017) 24758-24766.
    [11] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, 192 (2015) 3-25.
    [12] J. Lamb, C.J. Orendorff, E.P. Roth, J. Langendorf, Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components, Journal of The Electrochemical Society, 162 (2015) A2131-A2135.
    [13] A. Mauger, C.M. Julien, Critical review on lithium-ion batteries: are they safe? Sustainable?, Ionics, 23 (2017) 1933-1947.
    [14] Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies, Progress in Energy and Combustion Science, 73 (2019) 95-131.
    [15] J. Hou, L. Lu, L. Wang, A. Ohma, D. Ren, X. Feng, Y. Li, Y. Li, I. Ootani, X. Han, W. Ren, X. He, Y. Nitta, M. Ouyang, Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes, Nature communications, 11 (2020) 5100.
    [16] T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock, Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries, Electrochemical Energy Reviews, 3 (2019) 43-80.
    [17] V. Ovejas, A. Cuadras, Impedance Characterization of an LCO-NMC/Graphite Cell: Ohmic Conduction, SEI Transport and Charge-Transfer Phenomenon, Batteries, 4 (2018) 43.
    [18] N.H. Kwon, J. Conder, M. Srout, K.M. Fromm, Surface Modifications of Positive-Electrode Materials for Lithium Ion Batteries, Chimia, 73 (2019) 880-893.
    [19] C. Campion, W. Li, B. Lucht, Decomposition reactions of ethylene carbonate based lithium-ion battery electrolytes, in: ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2004, pp. U894-U894.
    [20] C.L. Campion, W. Li, B.L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, 152 (2005) A2327.
    [21] P. Teichert, H. Jahnke, E. Figgemeier, Degradation Mechanism of Monocrystalline Ni-Rich Li [Ni x Mn y Co z] O 2 (NMC) Active Material in Lithium Ion Batteries, Journal of The Electrochemical Society, 168 (2021) 090532.
    [22] C.-C. Lin, H.-C. Wu, J.-P. Pan, C.-Y. Su, T.-H. Wang, H.-S. Sheu, N.-L. Wu, Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode, Electrochimica Acta, 101 (2013) 11-17.
    [23] H.-M. Liu, D. Saikia, H.-C. Wu, C.-Y. Su, T.-H. Wang, Y.-H. Li, J.-P. Pan, H.-M. Kao, Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries, RSC Adv., 4 (2014) 56147-56155.
    [24] Y.-S. Duh, M.-T. Tsai, C.-S. Kao, Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles, Journal of Thermal Analysis and Calorimetry, 129 (2017) 1935-1948.
    [25] F. Laman, M. Gee, J. Denovan, Impedance studies for separators in rechargeable lithium batteries, Journal of The Electrochemical Society, 140 (1993) L51.
    [26] G. Venugopal, J. Moore, J. Howard, S. Pendalwar, Characterization of microporous separators for lithium-ion batteries, Journal of power sources, 77 (1999) 34-41.
    [27] C.L. Cheng, C.C. Wan, Y.Y. Wang, M.S. Wu, Thermal shutdown behavior of PVdF-HFP based polymer electrolytes comprising heat sensitive cross-linkable oligomers, Journal of Power Sources, 144 (2005) 238-243.
    [28] Y.-S. Wu, Q.-T. Pham, C.-C. Yang, C.-S. Chern, L. Musuvadhi Babulal, M. Seenivasan, G. Brunklaus, T. Placke, B.-J. Hwang, M. Winter, Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries, Chemical Engineering Journal, 405 (2021) 126727.
    [29] P.-G. Reinhard, E. Otten, Transition to deformed shapes as a nuclear Jahn-Teller effect, Nuclear Physics A, 420 (1984) 173-192.
    [30] S. Sicolo, M. Mock, M. Bianchini, K. Albe, And Yet It Moves: LiNiO2, a Dynamic Jahn–Teller System, Chemistry of Materials, 32 (2020) 10096-10103.
    [31] G. Cao, Z. Jin, J. Zhu, Y. Li, B. Xu, Y. Xiong, J. Yang, A green Al2O3 metal oxide coating method for LiNi0.5Co0.2Mn0.3O2 cathode material to improve the high voltage performance, Journal of Alloys and Compounds, 832 (2020) 153788.
    [32] X. Xiong, D. Ding, Z. Wang, B. Huang, H. Guo, X. Li, Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole, Journal of Solid State Electrochemistry, 18 (2014) 2619-2624.
    [33] S. Gao, F. Sun, N. Liu, H. Yang, P.-F. Cao, Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review, Materials Today, 40 (2020) 140-159.
    [34] J. Cho, Y.J. Kim, B. Park, Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell, Chemistry of Materials, 12 (2000) 3788-3791.
    [35] W. Zhao, J. Zheng, L. Zou, H. Jia, B. Liu, H. Wang, M.H. Engelhard, C. Wang, W. Xu, Y. Yang, J.G. Zhang, High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases, Advanced Energy Materials, 8 (2018) 1800297.
    [36] Y. Mo, L. Guo, H. Jin, B. Du, B. Cao, Y. Chen, D. Li, Y. Chen, Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries, Journal of Power Sources, 448 (2020) 227439.
    [37] Y. Yu, J.L. Shui, Y. Jin, C.H. Chen, Electrochemical performance of nano-SiO2 modified LiCoO2 thin films fabricated by electrostatic spray deposition (ESD), Electrochimica Acta, 51 (2006) 3292-3296.
    [38] D. Arumugam, G. Paruthimal Kalaignan, Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries, Journal of Electroanalytical Chemistry, 624 (2008) 197-204.
    [39] P. Karayaylali, R. Tatara, Y. Zhang, K.-L. Chan, Y. Yu, L. Giordano, F. Maglia, R. Jung, I. Lund, Y. Shao-Horn, Editors' Choice—Coating-Dependent Electrode-Electrolyte Interface for Ni-Rich Positive Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, 166 (2019) A1022-A1030.
    [40] Y.S. Lee, W.K. Shin, A.G. Kannan, S.M. Koo, D.W. Kim, Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al(2)O(3) Nanoparticles and Conductive Polymer, ACS Appl Mater Interfaces, 7 (2015) 13944-13951.
    [41] K. Liu, Q. Zhang, S. Dai, W. Li, X. Liu, F. Ding, J. Zhang, Synergistic Effect of F(-) Doping and LiF Coating on Improving the High-Voltage Cycling Stability and Rate Capacity of LiNi0.5Co0.2Mn0.3O2 Cathode Materials for Lithium-Ion Batteries, ACS Appl Mater Interfaces, 10 (2018) 34153-34162.
    [42] J. Ding, Z. Lu, M. Wu, C. Liu, H. Ji, G. Yang, Preparation and performance characterization of AlF 3 as interface stabilizer coated Li 1.24 Ni 0.12 Co 0.12 Mn 0.56 O 2 cathode for lithium-ion batteries, Applied Surface Science, 406 (2017) 21-29.
    [43] A. Tron, J. Mun, Hydrothermal MgF2 surface treatment of LiNi0.5Mn1.5O4 high voltage cathode materials for lithium-ion batteries, Journal of Solid State Chemistry, 302 (2021) 122411.
    [44] Y. Li, Q. Zhang, T. Xu, D. Wang, D. Pan, H. Zhao, Y. Bai, LaF3 nanolayer surface modified spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries, Ceramics International, 44 (2018) 4058-4066.
    [45] J.S. Park, A.U. Mane, J.W. Elam, J.R. Croy, Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries, Chemistry of Materials, 27 (2015) 1917-1920.
    [46] N. Owen, Q. Zhang, Investigations of aluminum fluoride as a new cathode material for lithium-ion batteries, Journal of Applied Electrochemistry, 47 (2017) 417-431.
    [47] C.-T. Chu, A. Mondal, N.V. Kosova, J.-Y. Lin, Improved high-temperature cyclability of AlF3 modified spinel LiNi0.5Mn1.5O4 cathode for lithium-ion batteries, Applied Surface Science, 530 (2020) 147169.
    [48] W. Liu, X. Li, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, X. Sun, Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2, Nano Energy, 44 (2018) 111-120.
    [49] S. Dong, Y. Zhou, C. Hai, J. Zeng, Y. Sun, Y. Ma, Y. Shen, X. Li, X. Ren, C. Sun, G. Zhang, Z. Wu, Enhanced Cathode Performance: Mixed Al2O3 and LiAlO2 Coating of Li1.2Ni0.13Co0.13Mn0.54O2, ACS Appl Mater Interfaces, 12 (2020) 38153-38162.
    [50] S. Liu, H. Wu, L. Huang, M. Xiang, H. Liu, Y. Zhang, Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries, Journal of Alloys and Compounds, 674 (2016) 447-454.
    [51] F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Near-Equilibrium Control of Li2TiO3 Nanoscale Layer Coated on LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Enhanced Electrochemical Performance, Inorganic chemistry, 58 (2019) 15498-15506.
    [52] J. Li, Y. Liu, W. Yao, X. Rao, S. Zhong, L. Qian, Li2TiO3 and Li2ZrO3 co-modification LiNi0.8Co0.1Mn0.1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries, Solid State Ionics, 349 (2020) 115292.
    [53] J. Zhang, R. Gao, L. Sun, H. Zhang, Z. Hu, X. Liu, Unraveling the multiple effects of Li 2 ZrO 3 coating on the structural and electrochemical performances of LiCoO 2 as high-voltage cathode materials, Electrochimica Acta, 209 (2016) 102-110.
    [54] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, Journal of Energy Chemistry, 43 (2020) 220-235.
    [55] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Materials Today, 19 (2016) 109-123.
    [56] F. Wang, S. Xiao, M. Li, X. Wang, Y. Zhu, Y. Wu, A. Shirakawa, J. Peng, A nanocomposite of Li 2 MnO 3 coated by FePO 4 as cathode material for lithium ion batteries, Journal of Power Sources, 287 (2015) 416-421.
    [57] Z. Feng, R. Rajagopalan, D. Sun, Y. Tang, H. Wang, In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery, Chemical Engineering Journal, 382 (2020) 122959.
    [58] X. Feng, J. Zhang, L. Yin, Enhanced cycling stability of Co3(PO4)2-coated LiMn2O4 cathode materials for lithium ion batteries, Powder Technology, 287 (2016) 77-81.
    [59] W. Chang, J.-W. Choi, J.-C. Im, J.K. Lee, Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries, Journal of Power Sources, 195 (2010) 320-326.
    [60] C.-R. Yang, J.-P. Pan, C.-A. Chen, J.-M. Hsu, Battery electrode paste composition containing modified maleimides, in, Google Patents, 2012.
    [61] F.M. Wang, T. Alemu, N.H. Yeh, X.C. Wang, Y.W. Lin, C.C. Hsu, Y.J. Chang, C.H. Liu, C.I. Chuang, L.H. Hsiao, J.M. Chen, S.C. Haw, W.L. Chen, Q.T. Pham, C.H. Su, Interface Interaction Behavior of Self-Terminated Oligomer Electrode Additives for a Ni-Rich Layer Cathode in Lithium-Ion Batteries: Voltage and Temperature Effects, ACS Appl Mater Interfaces, 11 (2019) 39827-39840.
    [62] Q.-T. Pham, W.-C. Ni, A.N.T. Mai, C.-S. Chern, Kinetics and mechanisms of non-isothermal polymerization of N,N′-bismaleimide-4,4′-diphenylmethane with cyanuric acid, Thermochimica Acta, 697 (2021) 178872.
    [63] J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang, Y. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery, ACS Appl Mater Interfaces, 6 (2014) 17965-17973.
    [64] A. Beezer, J. Chudy, Elucidation of coordination polymer stoichiometry via thermometric titrimetry: metal complexes of trithiocyanuric acid, Thermochimica Acta, 6 (1973) 231-237.
    [65] J. Dahn, U. von Sacken, C. Michal, Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH) 2 structure, Solid State Ionics, 44 (1990) 87-97.
    [66] Y. Chen, Y. Zhang, B. Chen, Z. Wang, C. Lu, An approach to application for LiNi0. 6Co0. 2Mn0. 2O2 cathode material at high cutoff voltage by TiO2 coating, Journal of Power Sources, 256 (2014) 20-27.
    [67] W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angewandte Chemie, 54 (2015) 4440-4457.
    [68] H. Wang, W. Ge, W. Li, F. Wang, W. Liu, M.Z. Qu, G. Peng, Facile Fabrication of Ethoxy-Functional Polysiloxane Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode with Improved Cycling Performance for Rechargeable Li-Ion Battery, ACS Appl Mater Interfaces, 8 (2016) 18439-18449.
    [69] F. Amalraj, D. Kovacheva, M. Talianker, L. Zeiri, J. Grinblat, N. Leifer, G. Goobes, B. Markovsky, D. Aurbach, Integrated Materials xLi[sub 2]MnO[sub 3]⋅(1−x)LiMn[sub 1/3]Ni[sub 1/3]Co[sub 1/3]O[sub 2] (x=0.3, 0.5, 0.7) Synthesized, Journal of The Electrochemical Society, 157 (2010) A1121.
    [70] S. Dai, G. Yan, L. Wang, L. Luo, Y. Li, Y. Yang, H. Liu, Y. Liu, M. Yuan, Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating, Journal of Electroanalytical Chemistry, 847 (2019) 113197.
    [71] C. Zhang, S. Liu, J. Su, C. Chen, M. Liu, X. Chen, J. Wu, T. Huang, A. Yu, Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries, Nanoscale, 10 (2018) 8820-8831.
    [72] Y. Ding, B. Deng, H. Wang, X. Li, T. Chen, X. Yan, Q. Wan, M. Qu, G. Peng, Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue, Journal of Alloys and Compounds, 774 (2019) 451-460.
    [73] K.M. Shaju, K.V. Ramanujachary, S.E. Lofland, G.V. Subba Rao, B.V.R. Chowdari, Spectral, magnetic and electrochemical studies of layered manganese oxides with P2 and O2 structure, Journal of Materials Chemistry, 13 (2003) 2633.
    [74] B. Deng, H. Wang, W. Ge, X. Li, X. Yan, T. Chen, M. Qu, G. Peng, Investigating the influence of high temperatures on the cycling stability of a LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode using an innovative electrolyte additive, Electrochimica Acta, 236 (2017) 61-71.
    [75] S. Han, Y. Liu, H. Zhang, C. Fan, W. Fan, L. Yu, X. Du, Succinonitrile as a high‐voltage additive in the electrolyte of LiNi0. 5Co0. 2Mn0. 3O2/graphite full batteries, Surface and Interface Analysis, 52 (2020) 364-373.
    [76] Y. Li, J. Guo, Y. Chen, S. Deng, J. Zhu, G. Cao, T. Lei, J. Zhang, S. Wang, S. Chang, Phase transition regulation and Cd-O/Cd-F compounds multi-effect modification synergistically act on LiNi0.5Mn1.5O4 cathode, Ionics, 26 (2019) 1681-1693.
    [77] S.-W. Lee, H. Kim, M.-S. Kim, H.-C. Youn, K. Kang, B.-W. Cho, K.C. Roh, K.-B. Kim, Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries, Journal of Power Sources, 315 (2016) 261-268.
    [78] J. Zhang, Q. Lu, J. Fang, J. Wang, J. Yang, Y. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery, ACS applied materials & interfaces, 6 (2014) 17965-17973.
    [79] Q. Guo, J. Huang, Z. Liang, H. Potapenko, M. Zhou, X. Tang, S. Zhong, The use of a single-crystal nickel-rich layered NCM cathode for excellent cycle performance of lithium-ion batteries, New Journal of Chemistry, 45 (2021) 3652-3659.
    [80] T. Sattar, S.J. Sim, B.S. Jin, H.S. Kim, Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries, Scientific reports, 11 (2021) 18590.
    [81] G.L. Xu, X. Liu, A. Daali, R. Amine, Z. Chen, K. Amine, Challenges and Strategies to Advance High‐Energy Nickel‐Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation, Advanced Functional Materials, 30 (2020) 2004748.
    [82] T.-F. Yi, J. Mei, Y.-R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries, Journal of Power Sources, 316 (2016) 85-105.
    [83] Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nature Energy, 4 (2019) 540-550.
    [84] T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors Limiting Li+Charge Transfer Kinetics in Li-Ion Batteries, Journal of The Electrochemical Society, 165 (2018) A361-A367.
    [85] S. Liu, J. Su, J. Zhao, X. Chen, C. Zhang, T. Huang, J. Wu, A. Yu, Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures, Journal of Power Sources, 393 (2018) 92-98.
    [86] N.P.W. Pieczonka, L. Yang, M.P. Balogh, B.R. Powell, K. Chemelewski, A. Manthiram, S.A. Krachkovskiy, G.R. Goward, M. Liu, J.-H. Kim, Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 22603-22612.
    [87] Q. Li, G. Li, C. Fu, D. Luo, J. Fan, L. Li, K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries, ACS Appl Mater Interfaces, 6 (2014) 10330-10341.
    [88] Y. Zhu, Y. Huang, R. Du, M. Tang, B. Wang, J. Zhang, Effect of Ni2+ on Lithium-Ion Diffusion in Layered LiNi1−x−yMnxCoyO2 Materials, Crystals, 11 (2021) 465.
    [89] C. Lv, Z. Li, X. Ren, K. Li, J. Ma, X. Duan, Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method, Journal of Materials Chemistry A, 9 (2021) 3995-4006.
    [90] J. Xu, F. Lin, M.M. Doeff, W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries, Journal of Materials Chemistry A, 5 (2017) 874-901.
    [91] Z. Fu, J. Hu, W. Hu, S. Yang, Y. Luo, Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra, Applied Surface Science, 441 (2018) 1048-1056.
    [92] D.-T. Nguyen, J. Kang, K.-M. Nam, Y. Paik, S.-W. Song, Understanding interfacial chemistry and stability for performance improvement and fade of high-energy Li-ion battery of LiNi0.5Co0.2Mn0.3O2//silicon-graphite, Journal of Power Sources, 303 (2016) 150-158.
    [93] X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu, J. Nan, Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells, Journal of Power Sources, 229 (2013) 308-312.
    [94] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir : the ACS journal of surfaces and colloids, 28 (2012) 965-976.
    [95] J. Im, J. Lee, M.-H. Ryou, Y.M. Lee, K.Y. Cho, Fluorinated Carbonate-Based Electrolyte for High-Voltage Li(Ni0.5Mn0.3Co0.2)O2/Graphite Lithium-Ion Battery, Journal of The Electrochemical Society, 164 (2017) A6381-A6385.
    [96] G. Xu, C. Pang, B. Chen, J. Ma, X. Wang, J. Chai, Q. Wang, W. An, X. Zhou, G. Cui, Prescribing Functional Additives for Treating the Poor Performances of High‐Voltage (5 V‐class) LiNi0. 5Mn1. 5O4/MCMB Li‐Ion Batteries, Advanced Energy Materials, 8 (2018) 1701398.
    [97] P. Ramadass, B. Haran, R. White, B.N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance, Journal of power sources, 112 (2002) 606-613.
    [98] L. Bodenes, R. Naturel, H. Martinez, R. Dedryvère, M. Menetrier, L. Croguennec, J.-P. Pérès, C. Tessier, F. Fischer, Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms, Journal of Power Sources, 236 (2013) 265-275.
    [99] M.J. Lain, E. Kendrick, Understanding the limitations of lithium ion batteries at high rates, Journal of Power Sources, 493 (2021) 229690.
    [100] Y.C. Lu, E.J. Crumlin, G.M. Veith, J.R. Harding, E. Mutoro, L. Baggetto, N.J. Dudney, Z. Liu, Y. Shao-Horn, In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions, Scientific reports, 2 (2012) 715.
    [101] F. Li, J. He, J. Liu, M. Wu, Y. Hou, H. Wang, S. Qi, Q. Liu, J. Hu, J. Ma, Gradient Solid Electrolyte Interphase and Lithium‐Ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries, Angewandte Chemie International Edition, 60 (2021) 6600-6608.
    [102] A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, Surface Characterization of Electrodes from High Power Lithium-Ion Batteries, Journal of The Electrochemical Society, 149 (2002) A1358.
    [103] A. Nurpeissova, D.-I. Park, S.-S. Kim, Y.-K. Sun, Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries, Journal of The Electrochemical Society, 163 (2015) A171-A177.
    [104] R. Jung, P. Strobl, F. Maglia, C. Stinner, H.A. Gasteiger, Temperature Dependence of Oxygen Release from LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Materials for Li-Ion Batteries, Journal of The Electrochemical Society, 165 (2018) A2869-A2879.
    [105] T. Hatsukade, A. Schiele, P. Hartmann, T. Brezesinski, J. Janek, Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes, ACS Appl Mater Interfaces, 10 (2018) 38892-38899.
    [106] X. Liu, D. Ren, H. Hsu, X. Feng, G.-L. Xu, M. Zhuang, H. Gao, L. Lu, X. Han, Z. Chu, J. Li, X. He, K. Amine, M. Ouyang, Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit, Joule, 2 (2018) 2047-2064.
    [107] M. Loveridge, G. Remy, N. Kourra, R. Genieser, A. Barai, M. Lain, Y. Guo, M. Amor-Segan, M. Williams, T. Amietszajew, M. Ellis, R. Bhagat, D. Greenwood, Looking Deeper into the Galaxy (Note 7), Batteries, 4 (2018) 3.
    [108] F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta, H.L. Xin, M.M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nature communications, 5 (2014) 3529.
    [109] R.D. McKerracher, J. Guzman-Guemez, R.G.A. Wills, S.M. Sharkh, D. Kramer, Advances in Prevention of Thermal Runaway in Lithium‐Ion Batteries, Advanced Energy and Sustainability Research, 2 (2021) 2000059.

    無法下載圖示 全文公開日期 2026/12/27 (校內網路)
    全文公開日期 2026/12/27 (校外網路)
    全文公開日期 2026/12/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE