簡易檢索 / 詳目顯示

研究生: 類文賢
Wen-shian Lei
論文名稱: 環氮錯合物之X-ray吸收光譜分析及其在燃料電池之應用
N4-marcocycle catalyst for DMFC application and its XAS analysis
指導教授: 黃柏仁
Bohr-Ran Huang
陳貴賢
Kuei-Hsien Chen
口試委員: 林麗瓊
Li-Chyong Chen
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 69
中文關鍵詞: 直接甲醇燃料電池過渡金屬吸收光譜
外文關鍵詞: DMFC, metal, XAS
相關次數: 點閱:289下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在直接甲醇燃料電池中,價格昂貴以及鉑觸媒被甲醇毒化造成燃料電池效能降低的問題一直難以得到解決,導致無法商業化。而近幾年有許多研究皆為使用過渡金屬環大錯合物做為陰極以改善甲醇毒化的問題,且價格低廉,如CoTMPP/C,但氧還原能力卻無法有明顯的提升。
本研究為使用Vitamin B12與活性碳混合後進行熱燒結,製成B12/C之觸媒。Vitamin B12之中心結構也為過渡金屬環大錯合物,中心金屬為鈷,但中心環狀結構為corrin,不同於先前研究中之金屬環大錯合物結構。
本研究比較具有不同官能基之Vitamin B12,進行電化學氧還原半反應測試,得知不同官能基之B12/C皆具有相似的氧還原能力,並使用XAS等儀器進行結構分析推測燒結後皆為同樣之結構。並推測由於燒結後將不必要之官能基移除,使cobalt corrin形成一非平整之平面結構而利於與氧氣反應。
從電化學測試中明顯發現B12/C之觸媒有優於CoTMPP/C許多的氧還原能力,且從測試中證實其不會被甲醇毒化,是極適合使用在DMFC之陰極觸媒,具有很大的潛力。


DMFC is a power-generating device, which coverts methanol and air/oxygen from chemical energy into electrical energy. However, the high-loading Pt utilization and the methanol crossover are thought to be the major issues to hinder the DMFC commercialization. In recent years, N4-metal macrocycles as cathode catalysts, which are not only insensitive to methanol but also low cost, are studied. However, these N4-metal macrocycles still have low oxygen-reducing activity compared to Pt catalysts.
Vitamin B12 is a cobalt-containing corrin ring structure. There are four kinds of vitamin B12 compounds, due to various radicals bonding with cobalt, and they are B12(-CN), B12(-CH3), B12(-OH) and B12(-Ado). In this study, various B12 compounds were mixed with activated carbon, and then the mixture was pyrolyzed by thermal chemical vapor deposition at various temperatures in N2-atomsphere, forming B12/C. It indicates that all kinds of B12 compounds have the similar electrochemical performances and structures after the pyrolysis. Which the central corrin ring structures were changed from octahedral structure to distorted square plane. Besides, the radicals bonding with cobalt were also removed. From electrochemical analysis, B12/C catalysts have better ORR ability than CoTMPP/C, and they perform the same ORR activity even in a methanol-containing solution. By DMFC tests, a single cell using B12/C catalysts in the cathode, which shows 40, 34 31, 29 and 29 mW cm-2 by feeding 1, 2 ,4 ,6 and 8 M methanol to the anode, respectively, indicating that B12/C catalysts have high ORR activity with methanol tolerance.

中文摘要………………………………………………………………I Abstract………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………IX 第一章 緒論…………………………………………………………1 1-1 石化燃料造成的世界問題……………………………………1 1-2 新能源開發……………………………………………………3 1-3 研究動機………………………………………………………3 第二章 原理與文獻探討……………………………………………4 2-1 燃料電池的種類與特點………………………………………4 2-1-1 燃料電池的種類……………………………………………4 2-1-2 燃料電池發電比較…………………………………………6 2-1-3 燃料電池的特點……………………………………………7 2-2 直接甲醇燃料電池……………………………………………8 2-2-1 直接甲醇燃料電池之構造…………………………………8 2-2-2 高分子電解質薄膜…………………………………………9 2-2-3 陽極觸媒材料………………………………………………11 2-2-3 陰極觸媒材料………………………………………………11 2-3 甲醇毒化機制…………………………………………………13 2-4 電化學原理……………………………………………………14 2-4-1 氧化還原反應………………………………………………14 2-4-2 氧氣還原途徑………………………………………………14 2-4-3 氧氣還原機制………………………………………………17 2-4-4 氧還原反應之電化學催化…………………………………18 2-5 過渡金屬環大錯合物之相關研究……………………………21 2-5-1 直接甲醇燃料電池觸媒的挑戰……………………………21 2-5-2 過渡金屬環大錯合物………………………………………26 2-6 B12-CN/C之相關研究…………………………………………27 第三章 實驗步驟與研究方法………………………………………31 3-1 實驗流程………………………………………………………31 3-1-1 實驗流程圖…………………………………………………31 3-1-2 觸媒製作……………………………………………………32 3-1-3 工作電極樣本製作…………………………………………32 3-1-4 實驗藥品及材料……………………………………………33 3-2 實驗儀器………………………………………………………34 3-2-1 恆電位分析儀………………………………………………34 3-2-2 旋轉電極及環-旋轉電極……………………………………37 3-2-3 直接甲醇燃料電池分析儀…………………………………38 3-2-4 電漿偶合原子發射光譜儀…………………………………39 3-2-5 拉曼振動光譜………………………………………………40 3-2-6 同步輻射光源………………………………………………41 3-2-7 X光吸收光譜…………………………………………………42 第四章 結果與討論…………………………………………………45 4-1 B12/C系列觸媒的特性分析……………………………………46 4-1-1 氧還原活性比較……………………………………………46 4-1-2 Raman分析……………………………………………………49 4-1-3 XAS分析………………………………………………………52 4-2 抗甲醇能力測試………………………………………………55 4-3 DMFC全電池測試………………………………………………59 第五章 結論與未來展望……………………………………………60 第六章 參考文獻……………………………………………………62

[1] 黃鎮江,燃料電池,全華圖書公司,台北,第3-75頁 (2003)。
[2] 衣寶廉,燃料電池-原理與應用,五南圖書出版有限公司,台北,第2-135頁(2005)。
[3] W. vielstich, A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells: Fundamentals Technology and Applications, John Wiley & Sons, NY, pp. 21 (2003)
[4] K. Sundmacher, T. Schultz, S. Zhou et al., “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis,” Chemical Engineering Science, vol. 56, no. 2, pp. 333-341 (2001)
[5] http://202.98.16.39/hxtx/read.php?brow=197
[6] J. Greeley, and M. Mavrikakis, “Competitive Paths for Methanol Decomposition on Pt(111),” Journal of the American Chemical Society, vol. 126, no. 12, pp. 3910-3919 (2004)
[7] K. Kinoshita, Electrochemical Oxygen Technology, John Wiley & Sons, NY, pp. 37 (1992)
[8] 查全性等,電極過程動力學導論,科學出版社,第19-63頁 (2004)。
[9] L. Genies, R. Faure, and R. Durand, “Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media,” Electrochimica Acta, vol. 44, no. 8-9, pp. 1317-1327 (1998)
[10] F. H. B. Lima, C. D. Sanches, and E. A. Ticianelli, “Physical Characterization and Electrochemical Activity of Bimetallic Platinum-Silver Particles for Oxygen Reduction in Alkaline Electrolyte,” Journal of The Electrochemical Society, vol. 152, no. 7, pp. A1466-A1473 (2005)
[11] J. Perez, E. R. Gonzalez, and E. A. Ticianelli, “Oxygen electrocatalysis on thin porous coating rotating platinum electrodes,” Electrochimica Acta, vol. 44, no. 8-9, pp. 1329-1339 (1998)
[12] T. J. Schmidt, H. A. Gasteiger, G. D. Stab et al., “Characterization of High-Surface-Area Electrocatalysts Using a Rotating Disk Electrode Configuration,” Journal of The Electrochemical Society, vol. 145, no. 7, pp. 2354-2358 (1998)
[13] J. P.Hoare, The Electrochemistry of Oxygen, John Wiley and Sons, NY, pp. 157-238 (1968)
[14] Conway, B. E., Comprehensive Treatise of Electrochemistry, Kluwer Academic Pub, NY, pp. 26-91 (1983)
[15] http://www.methanol.org/
[16] N. M. Markovic, and P. N. Ross, “Surface science studies of model fuel cell electrocatalysts,” Surface Science Reports, vol. 45, no. 4-6, pp. 117-229 (2002)
[17] J. Bruce R. Rauhe, F. R. McLarnon, and E. J. Cairns, “Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate,” Journal of The Electrochemical Society, vol. 142, no. 4, pp. 1073-1084, (1995)
[18] A. S. Aric, P. L. Antonucci, E. Modica et al., “Effect of Pt---Ru alloy composition on high-temperature methanol electro-oxidation,” Electrochimica Acta, vol. 47, no. 22-23, pp. 3723-3732 (2002)
[19] M. Watanabe, M. Uchida, and S. Motoo, “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol,” Journal of Electroanalytical Chemistry, vol. 229, no. 1-2, pp. 395-406 (1987)
[20] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56-58 (1991)
[21] G. Che, B. B. Lakshmi, E. R. Fisher et al., “Carbon nanotubule membranes for electrochemical energy storage and production,” Nature, vol. 393, no. 6683, pp. 346-349 (1998)
[22] J. M. Nugent, K. S. V. Santhanam, A. Rubio et al., “Fast Electron Transfer Kinetics on Multiwalled Carbon Nanotube Microbundle Electrodes,” Nano Letters, vol. 1, no. 2, pp. 87-91 (2001)
[23] B. Rajesh, K. Ravindranathan Thampi, J. Bonard et al., “Preparation of Pt-Ru bimetallic catalyst supported on carbon nanotubes,” Bulletin of Materials Science, vol. 23, no. 5, pp. 341-344 (2000)
[24] V. Lordi, N. Yao, and J. Wei, “Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst,” Chemistry of Materials, vol. 13, no. 3, pp. 733-737 (2001)
[25] C. E. Banks, T. J. Davies, G. G. Wildgoose et al., “Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites,” Chemical Communications, no. 7, pp. 829-841 (2005)
[26] C.-H. Wang, H.-C. Shih, Y.-T. Tsai et al., “High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth,” Electrochimica Acta, vol. 52, no. 4, pp. 1612-1617 (2006)
[27] J.-H. Choi, K.-W. Park, B.-K. Kwon et al., “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs,” Journal of The Electrochemical Society, vol. 150, no. 7, pp. A973-A978 (2003)
[28] E. Reddington, A. Sapienza, B. Gurau et al., “Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts,” Science, vol. 280, no. 5370, pp. 1735 (1998)
[29] A. S. Aric, Z. Poltarzewski, H. Kim et al., “Investigation of a carbon-supported quaternary Pt---Ru---Sn---W catalyst for direct methanol fuel cells,” Journal of Power Sources, vol. 55, no. 2, pp. 159-166 (1995)
[30] T. F. Fuller, F. J. Luczak, and D. J. Wheeler, “Electrocatalyst Utilization in Phosphoric Acid Fuel Cells,” Journal of The Electrochemical Society, vol. 142, no. 6, pp. 1752-1757 (1995)
[31] T. Toda, H. Igarashi, and M. Watanabe, “Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen,” Journal of The Electrochemical Society, vol. 145, no. 12, pp. 4185-4188 (1998)
[32] S. Mukerjee, and S. Srinivasan, “Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells,” Journal of Electroanalytical Chemistry, vol. 357, no. 1-2, pp. 201-224 (1993)
[33] J. Shim, D.-Y. Yoo, and J.-S. Lee, “Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell,” Electrochimica Acta, vol. 45, no. 12, pp. 1943-1951 (2000)
[34] T. Toda, H. Igarashi, and M. Watanabe, “Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys,” Journal of Electroanalytical Chemistry, vol. 460, no. 1-2, pp. 258-262 (1999)
[35] V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer et al., “Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure,” Angewandte Chemie-International Edition, vol. 45, no. 18, pp. 2897-2901 (2006)
[36] M. H. Shao, K. Sasaki, and R. R. Adzic, “Pd-Fe nanoparticles as electrocatalysts for oxygen reduction,” Journal of the American Chemical Society, vol. 128, no. 11, pp. 3526-3527, Mar (2006)
[37] R. Wang, S. Liao, Z. Fu et al., “Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction,” Electrochemistry Communications, vol. 10, no. 4, pp. 523-526 (2008)
[38] I. V. Malakhov, S. G. Nikitenko, E. R. Savinova et al., “In Situ EXAFS Study To Probe Active Centers of Ru Chalcogenide Electrocatalysts During Oxygen Reduction Reaction,” The Journal of Physical Chemistry B, vol. 106, no. 7, pp. 1670-1676 (2002)
[39] N. P. Subramanian, S. P. Kumaraguru, H. Colon-Mercado et al., “Studies on Co-based catalysts supported on modified carbon substrates for PEMFC cathodes,” Journal of Power Sources, vol. 157, no. 1, pp. 56-63 (2006)
[40] R. Jasinski, “A New Fuel Cell Cathode Catalyst,” Nature, vol. 201, no. 4925, pp. 1212-1213 (1964)
[41] H. Kalvelage, A. Mecklenburg, U. Kunz et al., “Electrochemical Reduction of Oxygen at Pyrolyzed Iron and Cobalt N4-Chelates on Carbon Black Supports,” Chemical Engineering & Technology, vol. 23, no. 9, pp. 803-807 (2000)
[42] B. Wang, “Recent development of non-platinum catalysts for oxygen reduction reaction,” Journal of Power Sources, vol. 152, pp. 1-15 (2005)
[43] R. Jiang, and D. Chu, “Remarkably Active Catalysts for the Electroreduction of O[sub 2] to H[sub 2]O for Use in an Acidic Electrolyte Containing Concentrated Methanol,” Journal of The Electrochemical Society, vol. 147, no. 12, pp. 4605-4609 (2000)
[44] Z.-F. Ma, X.-Y. Xie, X.-X. Ma et al., “Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell,” Electrochemistry Communications, vol. 8, no. 3, pp. 389-394 (2006)
[45] R. W. Reeve, P. A. Christensen, A. Hamnett et al., “Methanol Tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides,” Journal of The Electrochemical Society, vol. 145, no. 10, pp. 3463-3471 (1998)
[46] V. Paganin, E. Sitta, T. Iwasita et al., “Methanol crossover effect on the cathode potential of a direct PEM fuel cell,” Journal of Applied Electrochemistry, vol. 35, no. 12, pp. 1239-1243, Dec (2005)
[47] S. C. Barton, T. Patterson, E. Wang et al., “Mixed-reactant, strip-cell direct methanol fuel cells,” Journal of Power Sources, vol. 96, no. 2, pp. 329-336 (2001)
[48] H.-Y. DU, “Synthesis of Catalysts by Impregnation Method on Carbon Nanotubes for Direct Methanol Fuel Cell Application,” Master dissertation, Chinese Culture University, Taipei, Taiwan (2005)
[49] http://en.wikipedia.org/wiki/Raman_spectroscopy
[50] http://www.srrc.gov.tw/chinese/lightsource.aspx
[51] http://cars.uchicago.edu/xafs/
[52] 李志甫,「X光吸收光譜原理簡介」,X光吸收光譜數據分析研習營,新竹 (2009)
[53] http://www.nsrrc.org.tw/lifensrrc/x-ray_absorption_spectroscopy.htm
[54] Z. L. Zhang, B. Wang, Y. F. Yin et al., “Surface-enhanced Raman spectroscopy of Vitamin B-12 on silver particles in colloid and in atmosphere,” Journal of Molecular Structure, vol. 927, no. 1-3, pp. 88-90, Jun (2009)
[55] V. Krishnakumar, S. Seshadri, and S. Muthunatasen, “Analysis of vibrational spectra of 5,6-dimethyl benzimidazole based on density functional theory calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 68, no. 3, pp. 811-816 (2007)
[56] I. Sagi, M. D. Wirt, E. F. Chen et al., “STRUCTURE OF AN INTERMEDIATE OF COENZYME-B12 CATALYSIS BY EXAFS - COBALT(II)-B12,” Journal of the American Chemical Society, vol. 112, no. 24, pp. 8639-8644, Nov (1990)
[57] M. D. Wirt, I. Sagi, E. Chen et al., “Geometric conformations of intermediates of B12 catalysis by x-ray edge spectroscopy: cobalt(I) B12, cobalt(II) B12, and base-off adenosylcobalamin,” Journal of the American Chemical Society, vol. 113, no. 14, pp. 5299-5304 (1991)
[58] I. Sagi, and M. R. Chance, “Extent of trans effects in (nonalkyl)cobalamins: steric effects control the cobalt-nitrogen distance to 5,6-dimethylbenzimidazole,” Journal of the American Chemical Society, vol. 114, no. 21, pp. 8061-8066 (1992)
[59] T. S. Olson, B. Blizanac, B. Piela et al., “Electrochemical Evaluation of Porous Non-Platinum Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells,” Fuel Cells, vol. 9, no. 5, pp. 547-553 (2009)
[60] K. Wippermann, B. Richter, K. Klafki et al., “Carbon supported Ru-Se as methanol tolerant catalysts for DMFC cathodes. Part II: preparation and characterization of MEAs,” Journal of Applied Electrochemistry, vol. 37, no. 12, pp. 1399-1411, Dec (2007)
[61] Z. Q. Ma, P. Cheng, and T. S. Zhao, “A palladium-alloy deposited Nafion membrane for direct methanol fuel cells,” Journal of Membrane Science, vol. 215, no. 1-2, pp. 327-336 (2003)
[62] A. Sarkar, A. V. Murugan, and A. Manthiram, “Synthesis and characterization of nanostructured Pd-Mo electrocatalysts for oxygen reduction reaction in fuel cells,” Journal of Physical Chemistry C, vol. 112, no. 31, pp. 12037-12043, Aug (2008)

QR CODE