簡易檢索 / 詳目顯示

研究生: 鄧忠清
Chung-Ching Deng
論文名稱: IEEE 802.11無線區域網路跨層鏈結調適機制之研究
A Cross-Layer Link Adaptation Scheme in IEEE 802.11 WLANs
指導教授: 陳金蓮
JEAN-LIEN CHEN
口試委員: 鄭瑞光
RAY-GUANG CHENG
曹孝櫟
none
楊人順
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 57
中文關鍵詞: 鏈結調適無線區域網路訊雜比跨層鏈結調適跨層接收信號強度
外文關鍵詞: Received Signal Level, cross-layer, link adaptation, IEEE 802.11, CLLA, Signal-to-Noise Ratio
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在IEEE 802.11無線區域網路規範中,實體層(PHY Layer)提供了多重速率之選擇,但該規範在媒介存取控制層(MAC Layer)中並無明確機制來達到多重速率管理的功能,為有效利用無線通道資源、提昇資料傳輸速率及擴大無線區域網路的服務範圍,可設計一有效可執行的鏈結調適(Link Adaptation)機制。調適機制可依據傳輸過程中無線通道的品質來動態選擇適當之傳輸參數(例如調變方式、傳輸速率與編碼方式),以提高成功傳送機率,進而提昇網路之產能(Throughput)。
無線通訊環境中因路徑損失、遮蔽效應、多重路徑衰落及頻率干擾等因素,使得接收訊號之SNR(Signal to Noise Ratio)及RSL(Received Signal Level)皆隨接收端所在位置及時間產生不等之變化。為迅速有效掌握無線通道之狀況,吾人以接收端接收每一訊框(fame)之SNR及RSL作為無線通道估測及傳輸參數之選擇依據,較能及時反應無線通道之狀態並可機動調整最適合通道狀態之傳輸參數。此一將實體層之SNR或RSL資訊供媒介存取控制層使用的作法,即為”跨層”(Cross-layer)觀念。基於IEEE 802.11無線區域網路之分散式協調功能(Distributed Coordination Function, DCF),本論文提出跨層鏈結調適(Cross- Layer Link Adaptation)的機制。此機制依據媒介存取控制層傳送訊框成功與失敗次數及實體層之通道狀態,動態選擇最適當之媒介存取機制及傳輸參數,使每一個傳送訊框於該通道品質下,均以最適當之媒介存取機制及最高之可用傳輸速率傳送訊框,進而提昇系統之產能。
本論文以模擬方式驗證吾人所提出之跨層鏈結調適機制,並與固定速率及其它鏈結調適機制相比較。結果顯示本論文所提出之跨層鏈結調適機制無論在靜止或移動的環境下,其系統之產能均有較佳的表現。


In order to improve throughput, dynamic link adaptation schemes are designed so that the signal and protocol parameters can be adjusted as the radio link conditions change, according to the quality of a wireless channel. IEEE 802.11 standards, such as 802.11g and 802.11b, support multiple data transfer rate capability in the physical (PHY) layer, which allow medium access control (MAC) management entity to perform dynamic rate switching with the objective of improving the performance. Although the PHY layer supports multi-rate capability, MAC control schemes are required to exploit this capability.
The receiver's signal-to-noise ratio (SNR) and received signal level (RSL) vary with time due to path loss, shadowing effect, multi-path fading and interference. Hence, according to the SNR and RSL of the latest received frame, a link adaptation scheme can quickly respond to the channel variation and suitably adjust parameters for transmissions. This is a cross-layer design because the PHY layer shares the wireless channel information, i.e., SNR and RSL, with the MAC layer. To address the issues of dynamic rate adaptation, improve the data rate and extend the service coverage of an AP, we propose in this thesis a cross-layer link adaptation (CLLA) scheme that is effective and highly executable. The CLLA scheme uses the number of successful transmissions, the number of transmission failures and the channel information from the PHY layer to determine proper transmission parameters for subsequent medium accesses. The CLLA scheme lets frames be transmitted at the highest available data rate using proper medium access methods defined in the scheme, so high throughput can be achieved.
The CLLA scheme is compared with the fixed-rate scheme and other well-known link adaptation schemes, performance comparison is validated against simulations. Simulation results show that the CLLA scheme can achieve higher throughput in stationary or even mobile environment.

Abstract in Chinese…………………………………………………Ι Abstract in English…………………………………………………II Acknowledgements ……………………………………………………II Table of Contents……………………………………………………IV List of Figures………………………………………………………VI List of Tables…………………………………………………… VIII Chapter 1 Introduction ……………………………………………1 1.1 Related Work ……………………………………………………2 1.2 Motivation and Goals …………………………………………5 Chapter 2 Overview of the IEEE 802.11 Wireless LAN and Wireless Channel….7 2.1 Network Architectures ………………………………………7 2.2 The Medium Access Control (MAC) Layer …………………8 2.2.1 DCF….…………………………………………………………9 2.2.2 The RTS/CTS mechanism……………………………………10 2.2.3 The Fragmentation mechanism …………………………11 2.2.4 Error Recovery with the DCF ………………………… 12 2.3 The Physical (PHY) Layer………………………………… 13 2.3.1 802.11 PHY …………………………………………………13 2.3.2 802.11b PHY ……………………………………………… 13 2.3.3 802.11a PHY ……………………………………………… 15 2.3.4 802.11g PHY ……………………………………………… 16 2.4 Wireless Channel ……………………………………………16 2.4.1 Impact of Path Loss …………………………………… 16 2.4.2 Impact of Multipath………………………………………17 2.4.3 Coherence Time Concept …………………………………19 Chapter 3 Cross Layer Link Adaaptation Scheme……………21 3.1 Observations …………………………………………………22 3.2 Proposed Scheme: Cross-layer Link Adaptation Scheme 26 3.2.1 PHY Mode Table Establishment Phase……………………27 3.2.2 Usages of Frames……………………………………………31 3.2.3 Frame Transmission Phase…………………………………33 3.2.4 Frame Retransmission Phase …………………………… 34 3.2.5 Pseudo Coherence Time Adaptation …………………… 35 3.2.6 Fragmentation Mechanism …………………………………36 Chapter 4 Simulation Study ……………………………………40 4.1 Simulation Model ……………………………………………40 4.2 Simulation Results and Comparisons…………………… 42 4.2.1 Simulation results of scenario 1…………………… 45 4.2.2 Simulation results of scenario 2…………………… 46 4.2.3 Simulation results of scenario 3…………………… 48 4.2.4 Simulation results of scenario 4…………………… 49 Chapter 5 Conclusion and Future Work…………… …………51 References………………………………………………………… 53

[1] Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: IEEE Std 802.11, 1997.
[2] Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 2.4 GHz Band, IEEE Std 802.11b, 1999.
[3] Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications: Higher-speed Physical Layer Extension In The 5 GHz Band, IEEE Std 802.11a, 1999.
[4] Wireless LAN Medium Access Control (MAC) And Physical Layer (PHY) Specifications, IEEE Std 802.11g, 2003.
[5] S. A. Khayam, S. Karande, M. Krappel and H. Radha, “Cross-Layer Protocol Design for Real-time Multimedia Applications over 802.11 b Networks,” In Proc. of the International Conference Multimedia and Expo (ICME’03), vol. 2, July 2003, pp. 425-428.
[6] S. Shakkottai and T. S. Rappaport, “Cross-Layer Design for Wireless Networks,” IEEE Communication Magazine, October 2003, pp. 74-80.
[7] P. P. Pham, S. Perreau and A. Jayasuriya, “New Cross-Layer Design Approach to Ad Hoc Networks under Rayleigh Fading,” IEEE Journal on selected areas in Communications, vol. 23, no. 1, January 2005, pp. 28-39.
[8] L. Alonso, R. Ferrus and R. Agusti, “ MAC-PHY Enhancement for 802.11b WLAN Systems via Cross-Layering,” In Proc. of the IEEE Vehicular Technology Conference (VTC’03), vol. 2, Oct. 2003, pp. 776-780.
[9] Y. Fang, and A. B. McDonald, “Cross-Layer Performance Effects of Path Coupling in Wireless Ad Hoc Networks: Power and Throughput Implications of IEEE 802.11 MAC,” In Proc. of the IEEE Conference on Performance, Computing, and Communications, April 2002, pp. 281-290.
[10] L.-C. Wang, Y.-W. Lin and W.-C. Liu, “Cross-Layer Goodput Analysis for Rate Adaptive IEEE 802.11a WLAN in the Generalizes Nakagami Fading Channel,” In Proc. of the IEEE Internal Conference on Communications(ICC’04), vol.4, June 2004, pp. 2312-2316.
[11] L. Alonso and R. Agusti, “Automatic Rate Adaptation and Energy-Saving Mechanisms Based on Cross-Layer Information for Packet-Switched Data Networks,” IEEE Radio Communications, vol. 42, no. 3, March 2004, pp. 15-20.
[12] J. Zhao, Z. Guo and W. Zhu, “Power Efficiency in IEEE 802.11a WLAN with Cross-Layer Adaptation,” In Proc. of the International Conference on Communications (ICC’03), vol. 3, May 2003, pp. 2030-2034.
[13] A. Kamerman and L. Monteban, “WaveLAN-II: A High-Performance Wireless LAN for the Unlicensed Band,” J. Bell Labs. Tech., Summer 1997, pp. 118-133.
[14] G. Holland, N. Vaidya and P. Bahl, “A Rate-Adaptive MAC Protocol for Multi-Hop Wireless Networks,” In Proc. of the IEEE Conference on Mobile Computing and Networking (MOBICOM ’01), Sep. 2001, pp. 236-251.
[15] B. Sadeghi, V. Kanoia, A. Sabharwal and E. Knightly, “Opportunistic Media Access for Multirate Ad Hoc Networks,” In Proc. of the IEEE Conference on Mobile Computing and Networking (MOBICOM ’02), Sep. 2002, pp. 23-26.
[16] C. R. Lin and Y.-H. J. Chang, “AAR: an Adaptive Rate Control Protocol for Mobile Ad Hoc Networks,” In Proc. of the IEEE International Conference on Networking (ICON’03), Oct. 2003, pp. 585-590.
[17] D. Qiao and S. Choi, “Goodput Enhancement of IEEE 802.11a Wireless LA N via Link Adaptation,” In Proc. of the IEEE International Conference on Communications (ICC’01), vol. 7, June 2001, pp. 1995-2000.
[18] D. Qiao, S. Choi and K. G. Shin, “Goodput Analysis and Link Adaptation for IEEE 802.11a Wireless LANs,“IEEE Transactions on Mobile Computing, October 2002, pp. 278-292.
[19] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communications, vol. 8, no 3, March 2000, pp. 535-547.
[20] G. Bianchi, “IEEE 802.11-Saturation Throughput Analysis,”IEEE Communications Letters, vol. 2, no. 12, Dec. 1998, pp. 318-320.
[21] J. Jun, P. Peddabachagari and M. Sichitiu, “Theoretical Maximum Throughput of IEEE 802.11 and Its Applications,” In Proc. of the IEEE International Symposium on Network Computing and Applications (NCA’03), April 2003, pp. 249-256.
[22] X. Yang, and J. Rosdahl, “Throughput and Delay Limits of IEEE 802.11,” IEEE Communications Letters, vol. 6, no. 8, August 2002, pp. 355-357.
[23] Y. Kim, S. Choi., K. Jang and H. Hwang, “Throughput Enhancement of IEEE 802.11 WLAN via Frame Aggregation,” In Proc. of the IEEE Vehicular Technology Conference (VTC’04), Sept. 2004, pp. 3030-3034.
[24] J.del Prado Pavon and N. Sai Shankar, “Impact of Frame Size, Number of Stations and Mobility on the Throughput Performance of IEEE 802.11e,” In Proc. of the IEEE Wireless Communications and Networking Conference ( WCNC’04), vol. 2, March 2004, pp. 789-795.
[25] H. Chen, and Y. Li, “Performance Model of IEEE 802.11 DCF with Variable Packet Length” IEEE Communications Letters, vol. 8, no 3, March 2004, pp. 186-188.
[26] Y.-H. Kwon, D.-J. Park, S.-M. Lee and M.-K.Oh, “Determination of Fragmentation Size in Wireless System,” In Proc. of the IEEE Vehicular Technology Conference (VTC’03), vol. 3, April 2003, pp. 1550-1553.
[27] B.-S. Kim, Y. Fang, Tan F. Wong and Y. Kwon, “Throughput Enhancement through Dynamic Fragmentation in Wireless LANs,” IEEE Transaction on Vehicular Technology, vol. 54, no. 4, July 2005, pp. 1415-1425.
[28] S. Ci, H. Sharif and A. Young, “Frame Size Adaptation for Indoor Wireless Networks,” IEE Electronics Letters, vol. 37, no. 18, August 2001, p. 1135.
[29] S. Ci and H. Sharif, “An Link Adaptation Scheme for Improving Throughput in the IEEE 802.11 Wireless LAN,” In Proc. of the IEEE Local Computer Networks (LCN’02), Nov. 2002, pp. 205-208.
[30] B.E. Mullins, N. J. IV Davis and S. F. Midkiff, “A Wireless Local Area Network Protocol that Improves Throughput via Adaptive Control,” In Proc. of the IEEE International Conference on Communications (ICC’97), vol. 3, June 1997, pp. 1427-1431.
[31] X. Wang and S.A. Mujtaba, “Performance Enhancement of 802.11 Wireless LAN for Asymmetric Traffic Using an Adaptive MAC Layer Protocol,” In Proc. of the IEEE Vehicular Technology Conference (VTC’02), vol. 2, Sept. 2002, pp. 753-757.
[32] J. C. Wu, H. H. Liu and Y. J. Lung, “An Adaptive Multirate IEEE 802.11 Wireless LAN,” In Proc. of the IEEE International Conference on Information Networking, Feb. 2001, pp. 411-418.
[33] J. .P. Pavon and S. Chio, “Link Adaptation Strategy for IEEE 802.11 WLAN via Received Signal Strength Measurement,” In Proc. of the IEEE International Conference on Communications (ICC’03), vol. 2, May 2003, pp. 1108-1113.
[34] P. Cevillat, J. Jelitto, A. Noll Barreto and H.L. Truong, “A Dynamic Link Adaptation Algoriyhm for IEEE 802.11a Wireless LANs,” In Proc. of the IEEE International Conference on Communications ( ICC’03), 2003, pp. 1141-1145.
[35] C. Andern and M. Webster, “CCK Modulation Delivers 11Mbps for High Rate IEEE 802.11 Extension,” Wireless Symposium/Portable by Design Conference, Spring 1999, pp. 1-10.
[36] T.-D. Chiueh and S.-M. Li, “Trellis-Coded Complementary Code Keying for High-Rate Wireless LAN Systems,” IEE Communications Letters, vol. 5, no. 5, May 2001, pp. 191-193.
[37] W. Jeong, H. Park, H. Lee and S. Hwang, “Performance Improvement Techniques for CCK-OFDM WLAN Modem,” IEEE Transactions on Consumer Electronics, vol. 49, no. 3, August 2003, pp. 602-605.
[38] K. Balachandran, S. R. Kadaba, and S. Nanda, “Channel Quality Estimation and Rate Adaptation for Cellular Mobile Radio,” IEEE Journal on Selected Areas in Communications, July 1999, pp. 1244-125.
[39] X. Qiu and K. Chawla, “On the Performance on Adaptive Modulation in Cellular Systems,” IEEE Transactions on Communications, June 1999, pp. 884-895.
[40] T. Holliday, A. Goldsmith and P. Glynn, “Optimal Link Adaptation in Wideband CDMA Systems,” In Proc. of the IEEE International Conference on Global Telecommunications (GLOBECOM ’02), vol. 1, Nov. 17-21, 2002, pp. 721- 726.
[41] T. U, S. Sampei, N. Morinaga and K. Hamaguchi, “Symbol Rate and Modulation Level-Controlled Adaptive Modulation/TDMA/TDD System for High-Bit-Rate Wireless Data Transmission,” IEEE Transactions on Vehicular Technology, Nov. 1998, pp. 1134-1147.
[42] T. S. Rappaport, Wireless Communications Principles and Practice, Prentice Hall PTR, 1996.
[43] H. D. and B. G., “High-Rate Punctured Convolution Codes for Viterbi and Sequential Decoding,” IEEE Transactions on Communications, vol. 37, no. 11, Nov. 1989, pp. 1113-1125.
[44] Y. Yasuda, K. Kashiki and Y. Hirata, ”High-Rate Punctured Convolution Codes for Soft Decision Viterbi Decoding,” IEEE Transactions on Communications, vol. 32, no. 3, March 1984, pp. 315-319.
[45] J. H. Kim and J. K. Lee., “Performance Analysis of MAC Protocols for Wireless LAN in Rayleigh and Shadow Fading Channels,” In Proc. of the IEEE International Conference on Global Telecommunication ( GLOBECOM’97), vol. 1, Nov. 1997, pp .404-408.
[46] E. Lopez-Aguilera, J. Casademont and J. Cotrina, “IEEE 802.11g Performance in Presence of Beacon Control Frames,” In Proc. of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’04), vol. 1, Sept. 2004, pp. 318-322.
[47] J. Dong, G. Wang and D. Li, “Optimal Pilot Interval Design for the Dedicated Pilot Channel,” In Proc. of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing ( PACRIM’03), vol. 2, August 2003, pp. 635-637.
[48] H. H. Liu, J. C. Wu and W. Y. Chen, “New Frame-Based Network Allocation Vector for 802.11b Multirate Wireless LANs,” IEE Proceedings on Communications, vol. 149, no. 3, June 2002, pp. 147-51.
[49] S. Deng, “Empirical Model of WWW Document Arrivals Access Link,” In Proc. of the IEEE International Conference on Communications (ICC’ 96), vol. 3, June 1996, pp. 1797-1802.
[50] B. Sklar, Digital Communications Fundmentals and Applications, Prentice Hall PTR, 2001.
[51] X. Zeng, R. Bagrodia and M. Gerla, “GloMoSim: A Library for Parallel Simulation of Large-scale Wireless Networks,” In Proc. of the 12th Workshop on Parallel and Distributed Simulations (PADS’'98), May 1998, pp. 154-161.

無法下載圖示 全文公開日期 2011/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE