簡易檢索 / 詳目顯示

研究生: 李孋芳
Li-Fang Lee
論文名稱: 具有廣播與單播流量之多媒體無線區域網路之服務差異化
Service Differentiation of Multimedia Wireless Local Area Networks with Broadcast and Unicast Traffics
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
Nai-Jian Wang
林永松
Yeong-Sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 88
中文關鍵詞: 單播廣播傳輸機會成功送達率碰撞機率IEEE 802.11e
外文關鍵詞: IEEE 802.11e, broadcast, unicast, TXOP, throughput, collision probability
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以IEEE 802.11為基礎的無線區域網路通常會傳送單播和廣播的流量。然而,大部分IEEE 802.11的效能研究並未考慮廣播流量的存在。此篇論文中,我們研究非飽和之單跳隨意網路下廣播與單播流量的效能。首先,我們考慮一個混合流量節點的情境來研究在不同流量比例下(也就是,以廣播為主,均勻流量和以單播為主)單播和廣播流量相映的效能。更進一步來說,我們相信藉由車輛間之無線通訊,駕駛員的安全性應可顯著改善。在車載通訊(IVC)中廣播通常用來傳輸安全性相關的資訊像是流量壅塞通知、事故警告、路況報導等。由此可知,在一些重要的應用上廣播流量相較於單播流量應該給予更高的優先權。為了在車載隨意網路中達到駕駛間的互助,我們接著考慮每個節點為單一流量的情形。對於廣播流量我們提出一個動態的傳輸機會(TXOP)方法提供不僅有服務品質(QoS)的保證,同時也能增強廣播流量的可靠度。此動態TXOP方法會根據目前行動台傳輸佇列內封包的數目來調整TXOP參數。我們可以發現動態TXOP方法可以確保廣播流量的成功送達率和平均進接延遲優於單播流量。我們所感興趣的效能指標包含成功送達率、平均進接延遲、碰撞機率、封包遺失率以及封包丟棄率。最後但非最不重要的,我們使用C語言來撰寫模擬程式,並且以模擬結果來驗證數學分析結果的正確性。


    IEEE 802.11 based Wireless LANs (WLANs) usually transport both unicast and broadcast traffics. However, most studies on the performance of IEEE 802.11 network do not contemplate the existence of broadcast traffic. In this thesis, we investigate the relative performance of unicast and broadcast traffic in a one-hop ad hoc network under non-saturated conditions. We first consider a hybrid-traffic node scenario to study the respective performance of unicast and broadcast traffic in a variety of mixed traffic scenarios (i.e., broadcast-dominated, balanced, and unicast-dominated). Further, there is a growing belief that driver safety should be significantly improved by vehicle-to-vehicle wireless communications. In inter-vehicle communication (IVC), broadcast transmission is usually used for disseminating safety-related information such as traffic congestion notification, accident warning, road condition report, etc. This implies that broadcast traffic should be given priority over unicast traffic in some important applications. In order to achieve cooperative driving in vehicular ad hoc networks, we further consider a single-traffic node scenario. For broadcast traffic, we propose a dynamic TXOP scheme to provide not only Quality of Service (QoS) guarantee, but also enhance broadcast traffic’s reliability. The proposed dynamic TXOP scheme adjusts the TXOP limits of broadcast stations according to the current transmission queue occupancy. We show that the dynamic TXOP scheme can ensure broadcast traffic outperforms uncast traffic in term of throughput and service delay. The performance metrics of interest are throughput, service delay, collision probability, loss probability, and drop probability. Last but not least, analytical results are validated via simulation results, and the simulation program is written in C language.

    摘要 Abstract List of Figures List of Tables 1. Introduction 2. IEEE 802.11 Series Review 2.1 Architecture 2.2 Physical Layer 2.3 Medium Access Control Sub-Layer 2.4 Distributed Coordination Function (DCF) 2.5 EDCA Overview 2.6 IEEE 802.11 Broadcast Operation 3. System Model 3.1. Hybrid-Traffic Node 3.1.1. Homogeneous Scenarios 3.1.2. Heterogeneous Scenarios 3.1.3. Performance Metrics 3.2. Single-Traffic node 3.2.1. Intra -plane Transitions 3.2.2. Inter -plane Transitions 3.2.3. Heterogeneous Scenarios 3.2.4. Steady-State Probability Distribution 3.2.5. Iterative Algorithm 3.2.6. Performance Metrics 4. Numerical Results 4.1. Hybrid-Traffic Node Model 4.1.1. Fixed Number of Stations 4.1.2. Fixed Arrival Rate 4.2. Single-Traffic Node Model 4.2.1. Non-TXOP Scheme 4.2.2. Fixed-TXOP Scheme 4.2.3. Dynamic-TXOP Scheme 4.2.4. Comparison of Different TXOP Schemes 5. Conclusions References

    [1] "IEEE Standard for Information technology - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," IEEE Std 802.11-2007, pp. C1-1184, 2007.
    [2] B.P. Crow, I. Widjaja, J.G. Kim, and P.T. Sakai, “IEEE 802.11 Wireless Local Area Networks,” IEEE Communications Magazine, Sep. 1997, pp. 116-126.
    [3] H. Zhu, M. Li, I. Chlamtac, and B. Prabhakaran, “A Survey of Quality of Service in IEEE 802.11 Networks,” IEEE Wireless Communications, 2004, pp. 6-14.
    [4] E. Ziouva and T. Antonakopoulos, “CSMA/CA Performance under High Traffic Conditions: Throughput and Delay Analysis,” Computer Communications, vol. 25, Feb. 2002, pp. 313-321.
    [5] Y. Bi, L.X. Cai, X.S. Shen, and H. Zhao, “A Cross Layer Broadcast Protocol for Multihop Emergency Message Dissemination in Inter-Vehicle Communication,” Communications Society, 2010.
    [6] Z. Wang and M. Hassan, “The Throughput-Reliability Tradeoff in 802.11-Based Vehicular Safety Communications,” 2009 6th IEEE Consumer Communications and Networking Conference, Jan. 2009, pp. 1-5.
    [7] G. Bianchi, "Performance Analysis of the IEEE 802.11 Distributed Coordination Function," IEEE Journal on Selected Areas in Communications, vol. 18, pp. 535-547, 2000.
    [8] Y. Xiao, “Performance Analysis of Priority Schemes for IEEE 802.11 and IEEE 802.11e Wireless LANs,” IEEE Transactions on Wireless Communications, vol. 4, Jul. 2005, pp. 1506-1515.
    [9] C. Xu, and Z. Yang “Non-saturated Throughput Analysis of IEEE 802.11 Ad Hoc Networks,” IEICE Transactions on Information and Systems, vol. E89-D, no. 5, May. 2006, pp. 1676-1678.
    [10] X. Ma and X. Chen, “Saturation Performance of IEEE 802.11 Broadcast Networks,” IEEE Communications Letters, vol. 11, Aug. 2007, pp. 686-688.
    [11] X. Ma, and X. Chen, “Performance Analysis of IEEE 802.11 Broadcast Scheme in Ad Hoc Wireless LANs,” IEEE Transactions on Vehicular Technology, vol. 57, Nov. 2008, pp. 3757-3768.
    [12] J.C.-P. Wang, M. Abolhasan, D.R. Franklin, and F. Safaei, “Characterising the Behaviour of IEEE 802.11 Broadcast Transmissions in Ad Hoc Wireless LANs,” 2009 IEEE International Conference on Communications, Jun. 2009, pp. 1-5
    [13] X. Ma, X. Chen, and H.H. Refai, “Unsaturated Performance of IEEE 802.11 Broadcast Service in Vehicle-to-Vehicle Networks,” 2007 IEEE 66th Vehicular Technology Conference, Sep. 2007, pp. 1957-1961.
    [14] R. Oliveira, L. Bernardo, and P. Pinto, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function with Unicast and Broadcast Traffic,” 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2006, pp. 1-5.
    [15] R. Oliveira, L. Bernardo, and P. Pinto, “Modelling Delay on IEEE 802.11 MAC Protocol for Unicast and Broadcast Nonsaturated Traffic,” 2007 IEEE Wireless Communications and Networking Conference, 2007, pp. 463-467.
    [16] R. Oliveira, L. Bernardo, and P. Pinto, “The Influence of Broadcast Traffic on IEEE 802.11 DCF Networks,” Computer Communications, vol. 32, Feb. 2009, pp. 439-452.
    [17] J.C.-P. Wang, D.R. Franklin, M. Abolhasan, and F. Safaei, “Characterising the Interactions Between Unicast and Broadcast in IEEE 802.11 Ad Hoc Networks,” 2008 Australasian Telecommunication Networks and Applications Conference, Dec. 2008, pp. 180-185.
    [18] G. Min, J. Hu, and M.E. Woodward, “A Dynamic IEEE 802.11e TXOP Scheme in WLANs under Self-Similar Traffic: Performance Enhancement and Analysis,” 2008 IEEE International Conference on Communications, 2008, pp. 2632-2636.
    [19] A. Ksentini, A. Nafaa, A. Gueroui, and M. Naimi, “ETXOP: A Resource Allocation Protocol for QoS-Sensitive Services Provisioning in 802.11 Networks,” Performance Evaluation, vol. 64, Jun. 2007, pp. 419-443.
    [20] L. Romdhani and C. Bonnet, “Performance Analysis and Optimization of the 802.11e EDCA Transmission Opportunity ( TXOP ) Mechanism 1 Introduction 3 Analytical model,” WiMob, 2007.
    [21] H.-ting Wu, M.-hua Yang, K.-wei Ke, and L. Yan, “Enhanced QoS Mechanisms for IEEE 802.11e Wireless Networks,” World Academy of Science, Engineering and Technology, 2009, pp. 912-916.

    無法下載圖示 全文公開日期 2016/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE