簡易檢索 / 詳目顯示

研究生: 薛靈駿
Lingjun - Xue
論文名稱: 金屬玻璃薄膜做為CIGS太陽能電池中擴散阻障層的可行性研究
A Feasibility Study on the Diffusion Barrier Property of TFMGs in CIGS Solar Cell Application
指導教授: 朱瑾
Jinn P. Chu
口試委員: 郭東昊
Dong-Hau Kuo
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 91
中文關鍵詞: 銅銦鎵硒太陽能電池不鏽鋼金屬玻璃擴散阻障層
外文關鍵詞: copper indium gallium selenide (CIGS) solar cell, stainless steel, thin film metallic glass (TFMG), diffusion barrier
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以不鏽鋼(SS)作為基板的可撓式銅銦鎵硒(CIGS)太陽能電池由於其有前景的應用潛力,已引起相當大的關注。但其有害的基板成分在高溫製程中會擴散進入CIGS吸收層,限制了它的性能。薄膜金屬玻璃(TFMGs)沒有晶界,是理想的擴散阻障層材料。因此在實驗中嘗試將薄膜金屬玻璃作為擴散阻障層應用于以SS作為基板的CIGS太陽能電池中。
本研究以射頻脈衝磁控濺鍍法鍍制鋯基(Zr53.5Cu29.1Al6.5Ni10.9, Z-TFMG)及鎢基(W94Ni0.6B5.4, W-TFMG)金屬玻璃薄膜作為擴散阻障層,并製備了Mo/SS與 Mo/Z-TFMG/SS層狀結構進行前期研究,其中Z-TFMG厚度為100 nm。同時也製造了以SS為基板的CIGS太陽能電池,其中W-TFMG 與Z-TFMG厚度皆為 70 nm。利用X射線繞射法(XRD),穿透式電子顯微分析法(TEM),能量色散光譜法(EDS)以及電流-電壓(I/V)特性分析,樣品中的擴散行為及CIGS太陽能電池的性能得到了量測及評估。
在Mo/SS樣品的Mo層中,結晶形態以及元素成分在退火后發生了變化,表明SS的成分擴散進入Mo層中。同樣的變化並未在Mo/Z-TFMG/SS中觀測到。對於以SS為基板的CIGS太陽能電池來說,在未鍍擴散阻障層的太陽能電池中發生了最嚴重的擴散,其性能也最差;在鍍有W-TFMG的太陽能電池中有微量的擴散發生,其性能也有提高;在鍍有Z-TFMG的太陽能電池中未探測到擴散,其性能也是最好的。
基於以上結果,W-與Z-TFMG在以SS為基板的CIGS太陽能電池中作為擴散阻障層的可行性得到了證實。未來計劃進一步優化TFMG擴散阻障層的厚度以及使以SS為基板的CIGS太陽能電池擁有可比於以鈉鈣玻璃作為基板的CIGS太陽能電池的效率。


Flexible CIGS solar cells on stainless steel (SS) substrates have attracted considerable interests for their promising potentials, yet the detrimental diffusion of various SS constituents into CIGS absorber under high processing temperature limits the performance of these cells. Thin film metallic glasses (TFMGs), free from grain boundaries and thus lacks fast diffusion paths, are ideal materials for diffusion barrier. Therefore, to employ TFMG diffusion barriers for SS-based CIGS solar cells is probably worth trying.
In this study, TFMGs of Zr53.5Cu29.1Al6.5Ni10.9 (Z-TFMG) and W94Ni0.6B5.4 (W-TFMG) were deposited as diffusion barriers by RF magnetron sputtering. Layered structures of Mo/SS and Mo/Z-TFMG/SS with Z-TFMG thickness of 100 nm were processed and annealed for preliminary investigation. In addition, SS-based CIGS solar cell devices with and without 70-nm-thick Z- or W-TFMG barriers were also fabricated. By using X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and current-voltage (I/V) characterization, the diffusion behaviors in the samples and the performance of the cells were measured and evaluated.
In Mo/SS, crystallographic and compositional changes within the Mo layer are found after annealing, which could be attributed to diffusion of substrate constituents. On the other hand, such changes are absent in the Mo/Z-TFMG/SS. For the CIGS solar cells on SS, the barrierless one suffering the most extensive diffusion has the worst performance, followed by the minor one in W-TFMG cell with improved efficiency. No detectable diffusion is observed in the Z-TFMG cell correlating to its best performance among these cells.
Based on the results, the feasibility to use Z- and W-TFMG as diffusion barriers for SS-based CIGS solar cells is demonstrated. Further work needs to be done to optimize the thickness of the TFMGs as well as to fabricate CIGS cells on SS with comparable efficiency to those based on glass substrates.

摘要 I Abstract II Acknowledgement V Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Photovoltaic Technology 3 2.1.1 Photovoltaic Devices 3 2.1.2 Basic Structure and Operating Principles of a Si Solar Cell 4 2.1.3 Solar Cell Efficiency 7 2.1.4 CIGS Solar Cells and Their Fabrication Processes 11 2.1.5 I-V Characterization Technique for Solar Cells 16 2.2 Diffusion in CIGS Solar Cell 17 2.2.1 Fe Diffusion and Its Effects 17 2.2.2 Diffusion Barrier Applications for SS-based CIGS Solar Cells 19 2.2.3 Na Diffusion and Its Effects 23 2.3 Thin Film Metallic Glasses (TFMGs) 25 2.3.1 Development of TFMGs 25 2.3.2 Thermal Stability 26 2.3.3 Mechanical Properties 29 2.3.4 Adhesion Properties 31 2.3.5 Diffusion in Amorphous Materials 31 2.3.6 TFMG Diffusion Barriers in Electronic Applications 33 2.4 Sputtering Deposition Techniques 34 2.4.1 Sputtering Deposition 34 2.4.2 Radio Frequency (RF) Sputtering 35 2.4.3 Magnetron Sputtering 35 2.4.4 Effects of Substrate Bias in RF Sputtering 36 Chapter 3 Experimental Procedures 37 3.1 Sample Preparation 38 3.1.1 Substrate Preparation 38 3.1.2 TFMG Deposition 39 3.1.3 Fabrication and Annealing of Layered Structures 41 3.1.4 CIGS Solar Cell Fabrication 42 3.2 Sample Characterization 42 3.2.1 Crystallography, Microstructure and Composition Analysis 42 3.2.2 Surface Roughness Measurements of Polished SS 44 3.2.3 I-V Characteristics on CIGS Solar Cells 45 Chapter 4 Results and Discussion 46 4.1 Surface Roughness Analysis of Polished SS 46 4.2 Characterization of TFMGs 47 4.2.1 Thermal Analysis 47 4.2.2 Chemical Composition Analysis 47 4.3 Layered Mo/SS and Mo/TFMG/SS Structures 48 4.3.1 Crystallographic Analysis 48 4.3.2 Microstructure and Composition Analyses 51 4.4 CIGS Solar Cells on SS 58 4.4.1 Microstructure and Compositional Analyses 58 4.4.2 J-V Characteristics 64 4.5 Discussion 65 Chapter 5 Conclusions and Future Works 68 References 70

[1] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%, physica status solidi (RRL) – Rapid Research Letters, 9 (2015) 28-31.
[2] F. Kessler, D. Rudmann, Technological aspects of flexible CIGS solar cells and modules, Solar Energy, 77 (2004) 685-695.
[3] A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A.R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y.E. Romanyuk, G. Bilger, A.N. Tiwari, Highly efficient Cu (In, Ga) Se2 solar cells grown on flexible polymer films, Nature Material, 10 (2011) 857-861.
[4] K. Herz, A. Eicke, F. Kessler, R. Wächter, M. Powalla, Diffusion barriers for CIGS solar cells on metallic substrates, Thin Solid Films, 431 (2003) 392-397.
[5] M.S. Kim, J.H. Yun, K.H. Yoon, B.T. Ahn, Fabrication of flexible CIGS solar cell on stainless steel substrate by co-evaporation process, Solid State Phenomena, 124 (2007) 73-76.
[6] Zhang Li, He Qing, Xu Chuanming, Xue Yuming, Wang Chunjing, Shi Chengying, Xiao Jianping, Li Changjian, Sun Yun, Effects of Metal Cr Barrier on the Performance of Flexible Cu (In, Ga) Se2 Solar Cells Deposited on Stainless Steel Substrate, Chinese Journal of Semiconductors, 27 (2006) 1781.
[7] J. Qin, A. Li, Z. Chen, L. Zhao, X. Zhang, W. Shi, G. Wei, Silicon nitride films as the diffusion barriers for flexible CIGS thin film solar cells, Seventh International Conference on Thin Film Physics and Applications, International Society for Optics and Photonics, 2010, pp. 79952Y-79952Y-79954.
[8] C. Y. Shi, Yun Sun, , Qing He, F. Y. Li, J. C. Zhao, Cu (In, Ga) Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers, Solar Energy Materials and Solar Cells, 93 (2009) 654-656.
[9] D. Bae, S. Kwon, J. Oh, W.K. Kim, H. Park, Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu (In, Ga) Se2 solar cells, Renewable Energy, 55 (2013) 62-68.
[10] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, P. K. Liaw, Thin film metallic glasses: preparations, properties, and applications, JOM, 62 (2010) 19-24.
[11] W. Diyatmika, J. P. Chu, Y. W. Yen, C. H. Hsueh, Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn, Applied Physics Letters, 103 (2013) 241912.
[12] C. W. Wang, P. Yiu, J. P. Chu, C. H. Shek, C. H. Hsueh, Zr–Ti–Ni thin film metallic glass as a diffusion barrier between copper and silicon, Journal of Materials Science, 50 (2014) 1-8.
[13] M. D. Archer, M.A. Green, Clean electricity from photovoltaics, World Scientific (2014).
[14] E. Lorenzo, Solar electricity: engineering of photovoltaic systems, Progensa (1994).
[15] Theory of solar cells, from http://en.wikipedia.org/wiki/Theory_of_solar_cells.
[16] W. Shockley, H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, Journal of Applied Physics, 32 (1961) 510-519.
[17] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (Version 45), Progress in Photovoltaics: Research and Applications, 23 (2015) 1-9.
[18] K. Emery, D. Myers, Reference solar spectral irradiance: air mass 1.5, RERD (2009).
[19] A. Romeo, M. Terheggen, D. Abou-Ras, D. Bätzner, F. J. Haug, M. Kälin, D. Rudmann, A. Tiwari, Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells, Progress in Photovoltaics: Research and Applications, 12 (2004) 93-111.
[20] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki, Alkali incorporation control in Cu(In, Ga)Se(2) thin films using silicate thin layers and applications in enhancing flexible solar cell efficiency, Applied Physics Letters, 93 (2008).
[21] R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin, O. Yazdani-Assl, CIGS thin-film solar cells on steel substrates, Thin Solid Films, 517 (2009) 2415-2418.
[22] T. Yagioka, T. Nakada, Cd-free flexible Cu (In, Ga) Se2 thin film solar cells with ZnS (O, OH) buffer layers on Ti foils, Applied physics express, 2 (2009) 072201.
[23] A. Kampmann, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyen, K. Kalberlah, Electrodeposition of CIGS on metal substrates, MRS Proceedings, Cambridge University Press, 763 (2003) B8.5.
[24] D. Brémaud, D. Rudmann, M. Kaelin, K. Ernits, G. Bilger, M. Döbeli, H. Zogg, A. Tiwari, Flexible Cu (In, Ga) Se2 on Al foils and the effects of Al during chemical bath deposition, Thin Solid Films, 515 (2007) 5857-5861.
[25] M. Kaelin, D. Rudmann, A. Tiwari, Low cost processing of CIGS thin film solar cells, Solar Energy, 77 (2004) 749-756.
[26] K. Orgassa, H. W. Schock, J. Werner, Alternative back contact materials for thin film Cu (In, Ga) Se2 solar cells, Thin Solid Films, 431 (2003) 387-391.
[27] J. H. Scofield, A. Duda, D. Albin, B. Ballard, P. Predecki, Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, Thin Solid Films, 260 (1995) 26-31.
[28] U. Rau, M. Schmitt, J. Parisi, W. Riedl, F. Karg, Persistent photoconductivity in Cu (In, Ga) Se2 heterojunctions and thin films prepared by sequential deposition, Applied physics letters, 73 (1998) 223-225.
[29] V. Nadenau, D. Hariskos, H.-W. Schock, M. Krejci, F.-J. Haug, A. Tiwari, H. Zogg, G. Kostorz, Microstructural study of the CdS/CuGaSe2 interfacial region in CuGaSe2 thin film solar cells, Journal of Applied Physics, 85 (1999) 534-542.
[30] A. Romeo, M. Terheggen, D. Abou-Ras, D. Batzner, F. Haug, M. Kalin, D. Rudmann, A. Tiwari, Development of thin-film Cu (In, Ga) Se2 and CdTe solar cells, Progress in photovoltaics, 12 (2004) 93-112.
[31] C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot, A. N. Tiwari, Non-vacuum methods for formation of Cu (In, Ga) (Se, S)2 thin film photovoltaic absorbers, Progress in Photovoltaics: Research and Applications, 18 (2010) 434-452.
[32] S. Luo, J.-H. Lee, C.-W. Liu, J.-M. Shieh, C.-H. Shen, T.-T. Wu, D. Jang, J. R. Greer, Strength, stiffness, and microstructure of Cu (In, Ga) Se2 thin films deposited via sputtering and co-evaporation, Applied Physics Letters, 105 (2014) 011907.
[33] Chang-Hong Shen, Jia-Min Shieh, Tsung-Ta Wu, Uio-Pu Chiou, Hao-Chung Kuo, Peichen Yu, Tien-Chang Lu, Yu-Lun Chueh, Chee-Wee Liu, Chenming Hu, Fu-Liang Yang, Hybrid CIS/Si near-IR sensor and 16% PV energy-harvesting technology, Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 12.12.11-12.12.14.
[34] N. Tokio, M. Masayuki, 18% Efficiency Cd-Free Cu (In, Ga) Se 2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers, Japanese Journal of Applied Physics, 41 (2002) 165.
[35] S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Naghavi, D. Lincot, Large-area Cd-free CIGS solar modules with In2S3 buffer layer deposited by ALCVD, Thin Solid Films, 451–452 (2004) 562-566.
[36] A. H. Jahagirdar, A. A. Kadam, N. G. Dhere, Role of i-ZnO in optimizing open circuit voltage of CIGS2 and CIGS thin film solar cells, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, IEEE, 2006, pp. 557-559.
[37] U. Malm, Modelling and Degradation Characteristics of Thin-film CIGS Solar Cells, Acta Universitatis Upsaliensis, Uppsala, 2008.
[38] M. Hartmann, M. Schmidt, A. Jasenek, H. Schock, F. Kessler, K. Herz, M. Powalla, Flexible and light weight substrates for Cu (In, Ga) Se2 solar cells and modules, Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, IEEE, 2000, pp. 638-641.
[39] P. Heitjans, J. Kärger, Diffusion in condensed matter: methods, materials, models, Springer Science & Business Media (2006).
[40] N.A. Stolwijk, S. Obeidi, J. Bastek, R. Wuerz, A. Eicke, Fe diffusion in polycrystalline Cu (In, Ga) Se2 layers for thin-film solar cells, Applied Physics Letters, 96 (2010) 244101.
[41] R. Wuerz, A. Eicke, F. Kessler, F. Pianezzi, Influence of iron on the performance of CIGS thin-film solar cells, Solar Energy Materials and Solar Cells, 130 (2014) 107-117.
[42] M. Lammer, U. Klemm, M. Powalla, Sodium co-evaporation for low temperature Cu (In, Ga) Se2 deposition, Thin Solid Films, 387 (2001) 33-36.
[43] J. Haarstrich, H. Metzner, M. Oertel, C. Ronning, T. Rissom, C. A. Kaufmann, T. Unold, H.W. Schock, J. Windeln, W. Mannstadt, E. Rudigier-Voigt, Increased homogeneity and open-circuit voltage of Cu (In, Ga) Se2 solar cells due to higher deposition temperature, Solar Energy Materials and Solar Cells, 95 (2011) 1028-1030.
[44] F. Kessler, D. Herrmann, M. Powalla, Approaches to flexible CIGS thin-film solar cells, Thin Solid Films, 480–481 (2005) 491-498.
[45] P. Blösch, F. Pianezzi, A. Chirilă, P. Rossbach, S. Nishiwaki, S. Buecheler, A. Tiwari, Diffusion barrier properties of molybdenum back contacts for Cu (In, Ga) Se2 solar cells on stainless steel foils, Journal of Applied Physics, 113 (2013) 054506.
[46] D.-H. Cho, Y.-D. Chung, K.-S. Lee, K.-H. Kim, J.-H. Kim, S.-J. Park, J. Kim, Photovoltaic performance of flexible Cu (In, Ga) Se2 thin-film solar cells with varying Cr impurity barrier thickness, Current Applied Physics, 13 (2013) 2033-2037.
[47] D. Amouzou, P. Guaino, J. Dumont, L. Fourdrinier, J.-B. Richir, R. Sporken, F. Maseri, Novel high thermal barrier layers for flexible CIGS solar cells on stainless steel substrates, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, IEEE, 2011, pp. 001229-001234.
[48] L. Guo, M. Mason, M. Hopstaken, A. Kellock, L.T. Romankiw, H. Deligianni, A Diffusion Barrier for Flexible Thin Film Photovoltaics, Journal of The Electrochemical Society, 160 (2013) D102-D106.
[49] B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Control of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier, Applied Physics Letters, 101 (2012) 053903.
[50] B. Li, J. Li, L. Wu, W. Liu, Y. Sun, Y. Zhang, Barrier effect of AlN film in flexible Cu (In, Ga) Se2 solar cells on stainless steel foil and solar cell, Journal of Alloys and Compounds, 627 (2015) 1-6.
[51] J. Hedstrom, H. Ohlsen, M. Bodegârd, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. Schock, ZnO/CdS/Cu (In, Ga) Se2 thin film solar cells with improved performance, Photovoltaic Specialists Conference, 1993, Conference Record of the Twenty Third IEEE, IEEE, 1993, pp. 364-371.
[52] D. Rudmann, A. F. Da Cunha, M. Kaelin, F. J. Haug, H. Zogg, A. N. Tiwari, Effects of Na on the Growth of Cu (In, Ga) Se2 Thin Films and Solar Cells, Materials Research Society Symposium-Proceedings, 2003, pp. 53-66.
[53] M.B. Ård, K. Granath, L. Stolt, Growth of Cu (In, Ga) Se2 thin films by coevaporation using alkaline precursors, Thin Solid Films, 361 (2000) 9-16.
[54] A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells, Academic Press (1983).
[55] V. Probst, J. Rimmasch, W. Riedl, W. Stetter, J. Holz, H. Harms, F. Karg, H. Schock, The impact of controlled sodium incorporation on rapid thermal processed Cu (In, Ga) Se2-thin films and devices, Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference on, IEEE, 1994., pp. 144-147.
[56] M. A. Contreras, K. Jones, L. Gedvilas, R. Matson, Preferred orientation in polycrystalline Cu (In, Ga) Se2 and its effect on absorber thin-films and devices, National Renewable Energy Laboratory2000.
[57] K. Granath, M. Bodegård, L. Stolt, The effect of NaF on Cu (In, Ga) Se2 thin film solar cells, Solar Energy Materials and Solar Cells, 60 (2000) 279-293.
[58] D. Wolf, G. Müller, W. Stetter, F. Karg, In-situ investigation of Cu-In-Se reactions: impact of Na on CIS formation, Proceedings of the 2nd World Conference on Photovoltaic Solar Energy Conversion, 1998, pp. 2426-2430.
[59] A. Rockett, J. S. Britt, T. Gillespie, C. Marshall, M. M. Al Jassim, F. Hasoon, R. Matson, B. Basol, Na in selenized Cu (In, Ga) Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances, Thin Solid Films, 372 (2000) 212-217.
[60] R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk, H. W. Schock, The influence of Na on low temperature growth of CIGS thin film solar cells on polyimide substrates, Thin Solid Films, 517 (2009) 2187-2190.
[61] J. Granata, J. Sites, S. Asher, R. Matson, Quantitative incorporation of sodium in CuInSe2 and Cu (In, Ga) Se2 photovoltaic devices, Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, IEEE, 1997, pp. 387-390.
[62] H. Wang, I. Shih, C. Champness, Characteristics of CuInSe2 Bridgman ingots grown with sodium, Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, IEEE, 2000, pp. 642-645.
[63] D.W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B.J. Tielsch, J.E. Fulghum, Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 15 (1997) 3044-3049.
[64] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H. Schock, Influence of sodium on the growth of polycrystalline Cu (In, Ga) Se2 thin films, Thin Solid Films, 361 (2000) 161-166.
[65] D. W. Niles, M. Al-Jassim, K. Ramanathan, Direct observation of Na and O impurities at grain surfaces of CuInSe2 thin films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17 (1999) 291-296.
[66] D. Rudmann, A.F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A. N. Tiwari, G. Bilger, Efficiency enhancement of Cu (In, Ga) Se2 solar cells due to post-deposition Na incorporation, Applied Physics Letters, 84 (2004) 1129-1131.
[67] D. Rudmann, D. Brémaud, A. F. da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg, A. N. Tiwari, Sodium incorporation strategies for CIGS growth at different temperatures, Thin Solid Films, 480–481 (2005) 55-60.
[68] M. A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, R. Noufi, On the role of Na and modifications to Cu (In, Ga) Se2 absorber materials using thin-MF (M= Na, K, Cs) precursor layers, Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, IEEE, 1997, pp. 359-362.
[69] E. S. Park, D. H. Kim, Design of Bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review, Metals and Materials International, 11 (2005) 19-27.
[70] C. J. Chen, J. C. Huang, H. S. Chou, Y. H. Lai, L. W. Chang, X. H. Du, J. P. Chu, T. G. Nieh, On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films, Journal of Alloys and Compounds, 483 (2009) 337-340.
[71] H.S. Chou, J.C. Huang, Y. H. Lai, L. W. Chang, X. H. Du, J. P. Chu, T. G. Nieh, Amorphous and nanocrystalline sputtered Mg-Cu thin films, Journal of Alloys and Compounds, 483 (2009) 341-345.
[72] J. P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films, 520 (2012) 5097-5122.
[73] W. Klement, R. Willens, Non-crystalline structure in solidified gold–silicon alloys, Nature, 187 (1960) 869 - 870.
[74] D. Turnbull, M.H. Cohen, Crystallization kinetics and glass formation, Modern Aspects of the Vitreous State, 1 (1960) 38-62.
[75] D. Turnbull, J.C. Fisher, Rate of Nucleation in Condensed Systems, The Journal of Chemical Physics, 17 (1949) 71-73.
[76] J. E. Burke, D. Turnbull, Recrystallization and grain growth, Progress in Metal Physics, 3 (1952) 220-292.
[77] H. W. Kui, Formation of bulk Pd40Ni40P20 glass, Applied Physics Letters, 62 (1993) 1224-1226.
[78] N. Nishiyama, A. Inoue, Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy, Materials Transactions, JIM, 37 (1996) 1531-1539.
[79] A. Inoue, T. Zhang, T. Masumoto, Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region, Materials Transactions, JIM, 31 (1990) 177-183.
[80] A. Peker, W. L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Applied Physics Letters, 63 (1993) 2342-2344.
[81] C. C. Hays, J. Schroers, U. Geyer, S. Bossuyt, N. Stein, W. L. Johnson, Glass forming ability in the Zr-Nb-Ni-Cu-Al bulk metallic glasses, Journal of Metastable and Nanocrystalline Materials, 8 (1999) 103-108.
[82] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Materialia, 49 (2001) 2645-2652.
[83] C. L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma, J. Xu, A new centimeter-diameter Cu-based bulk metallic glass, Scripta Materialia, 54 (2006) 1403-1408.
[84] V. Ponnambalam, S.J. Poon, G. J. Shiflet, V. M. Keppens, R. Taylor, G. Petculescu, Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys, Applied Physics Letters, 83 (2003) 1131-1133.
[85] Z. Lu, C. Liu, J. Thompson, W. Porter, Structural amorphous steels, Physical Review Letters, 92 (2004) 245503.
[86] Y. C. Kim, W. T. Kim, D. H. Kim, A development of Ti-based bulk metallic glass, Materials Science and Engineering: A, 375 (2004) 127-135.
[87] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang, T. Masumoto, Ti-based amorphous-alloys with a wide supercooled liquid region, Materials Letters, 19 (1994) 131-135.
[88] S. Yi, T. G. Park, D. H. Kim, Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si, Sn) system, Journal of Materials Research, 15 (2000) 2425-2430.
[89] H. Choi-Yim, D. H. Xu, W. L. Johnson, Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X = B, Fe, Cu) alloy systems, Applied Physics Letters, 82 (2003) 1030-1032.
[90] M. Nastasi, F.W. Saris, L.S. Hung, J.W. Mayer, Stability of amorphous Cu/Ta and Cu/W alloys, Journal of Applied Physics, 58 (1985) 3052-3058.
[91] J. Rivory, J.M. Frigerio, M. Harmelin, A. Quivy, Y. Calvayrac, J. Bigot, Preparation of CuxZr1-x metallic glasses by sputtering and their thermal stability, electrical and optical properties, Thin Solid Films, 89 (1982) 323-327.
[92] C. Qing-Ming, F. Yu-Dian, L. Heng-De, Amorphization of binary alloys by magnetron co-sputtering, Materials Letters, 6 (1988) 311-315.
[93] R. B. Schwarz, W. L. Johnson, Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals, Physical Review Letters, 51 (1983) 415-418.
[94] E. J. Cotts, W. J. Meng, W. L. Johnson, Calorimetric study of amorphization in planar, binary, multilayer, thin-film diffusion couples of Ni and Zr, Physical Review Letters, 57 (1986) 2295-2298.
[95] H. S. Chou, J. C. Huang, L. W. Chang, Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum, Surface and Coatings Technology, 205 (2010) 587-590.
[96] O. M. Smirnov, Rheological behavior of superplastic nanocrystalline and amorphous materials, Materials science forum, Trans Tech, 1999, pp. 341-348.
[97] H. Kimura, M. Kishida, T. Kaneko, A. Inoue, T. Masumoto, Physical and mechanical properties of Zr-based metallic glasses, Materials Transactions, JIM, 36 (1995) 890-895.
[98] O. Haruyama, H. Kimura, A. Inoue, Thermal stabilities of some glassy metals with a wide supercooled liquid region, Materials Science and Engineering: A, 226 (1997) 209-212.
[99] M. Sorescu, L. Tsakalakos, T. Sands, Fluence effects on the magnetic properties of Fe81B13.5Si3.5C2 metallic glass produced by pulsed laser deposition, Journal of Applied Physics, 85 (1999) 6652-6654.
[100] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, Asia Pacific Symposium on Microelectronics and MEMS. International Society for Optics and Photonics, 1999, pp. 97-108.
[101] J. P. Chu, C.-T. Lo, Y.-K. Fang, B.-S. Han, On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: A magnetic and property study, Applied physics letters, 88 (2006) 012510-012510-012513.
[102] A. T. Negussie, W. Diyatmika, J. P. Chu, Y. L. Shen, J. S. C. Jang, C. H. Hsueh, Annealing-induced shape recovery in thin film metallic glass, Journal of Alloys and Compounds, 613 (2014) 157-163.
[103] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, Surface antimicrobial effects of Zr61Al7.5Ni10Cu17.5Si4 thin film metallic glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans, Fooyin Journal of Health Sciences, 2 (2010) 12-20.
[104] C. M. Lee, J. P. Chu, W. Z. Chang, J. W. Lee, J. S. C. Jang, P. K. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: a comparison study, Thin Solid Films, 561 (2014) 33-37.
[105] W. Diyatmika, J. P. Chu, Y. W. Yen, W. Z. Chang, C. H. Hsueh, Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation, Thin Solid Films, 561 (2014) 93-97.
[106] B. Tulu, W. Z. Chang, J. P. Chu, S. F. Wang, Forming-free resistive switching characteristics of 15 nm-thick multicomponent oxide, Applied Physics Letters, 103 (2013) 252904.
[107] C. Suryanarayana, A. Inoue, Bulk metallic glasses, CRC Press (2010).
[108] T. Chong, H. Koon, Thickness dependent nano-crystallization in Ge2Sb2Te5 films and its effect on devices, Japanese Journal of Applied Physics, 46 (2007) 2211.
[109] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.
[110] M. F. Ashby, A. L. Greer, Metallic glasses as structural materials, Scripta Materialia, 54 (2006) 321-326.
[111] B. Yang, C. T. Liu, T. G. Nieh, Unified equation for the strength of bulk metallic glasses, Applied Physics Letters, 88 (2006) 221911.
[112] J. C. Ye, J. P. Chu, Y. C. Chen, Q. Wang, Y. Yang, Hardness, yield strength, and plastic flow in thin film metallic-glass, Journal of Applied Physics, 112 (2012) 053516.
[113] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better, Advanced materials, 23 (2011) 461-476.
[114] H. S. Chou, J. C. Huang, L. W. Chang, T. G. Nieh, Structural relaxation and nanoindentation response in Zr–Cu–Ti amorphous thin films, Applied Physics Letters, 93 (2008) 191901.
[115] K. L. Mittal, Adhesion measurement of films and coatings, VSP (1995).
[116] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass, Japanese Journal of Applied Physics, 40 (2001) 5382.
[117] J. H. Chu, J. Lee, C. C. Chang, Y. C. Chan, M. L. Liou, J. W. Lee, J. S. C. Jang, J. G. Duh, Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass, Surface and Coatings Technology, 259, Part A (2014) 87-93.
[118] J. C. Chang, J. W. Lee, B. S. Lou, C. L. Li, J. P. Chu, Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses, Thin Solid Films, 584 (2015) 253-256.
[119] F. X. Liu, F. Q. Yang, Y. F. Gao, W. H. Jiang, Y. F. Guan, P. D. Rack, O. Sergic, P. K. Liaw, Micro-scratch study of a magnetron-sputtered Zr-based metallic-glass film, Surface and Coatings Technology, 203 (2009) 3480-3484.
[120] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. P. Chu, J. S. C. Jang, Y. Gao, P. K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films, 561 (2014) 2-27.
[121] F. Faupel, W. Frank, M. P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H.R. Schober, S. K. Sharma, H. Teichler, Diffusion in metallic glasses and supercooled melts, Reviews of Modern Physics, 75 (2003) 237-280.
[122] M. A. Nicolet, Ternary amorphous metallic thin films as diffusion barriers for Cu metallization, Applied Surface Science, 91 (1995) 269-276.
[123] J. S. Reid, E. Kolawa, C. Garland, M. A. Nicolet, F. Cardone, D. Gupta, R. Ruiz, Amorphous (Mo, Ta, or W)–Si–N diffusion barriers for Al metallizations, Journal of Applied Physics, 79 (1996) 1109-1115.
[124] J. S. Reid, E. Kolawa, R. P. Ruiz, M. A. Nicolet, Evaluation of amorphous (Mo, Ta, W)-Si-N diffusion barriers for〈Si〉|Cu metallizations, Thin Solid Films, 236 (1993) 319-324.
[125] Sputter deposition 2015, from https://en.wikipedia.org/wiki/Sputter_deposition.
[126] P. Kelly, R. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 (2000) 159-172.
[127] E. Bergmann, D. Rosello, Corrosion protection with perfect atomic layers, 2013, from http://www.polymedia.ch/OpArticles/view/57.
[128] Y. Igasaki, H. Mitsuhashi, The effects of substrate bias on the structural and electrical properties of TiN films prepared by reactive rf sputtering, Thin Solid Films, 70 (1980) 17-25.
[129] S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, CIGS absorbers and processes, Progress in Photovoltaics: Research and Applications, 18 (2010) 453-466.
[130] N. Ismail, M. Uhlemann, A. Gebert, J. Eckert, Hydrogenation and its effect on the crystallisation behaviour of Zr55Cu30Al10Ni5 metallic glass, Journal of Alloys and Compounds, 298 (2000) 146-152.
[131] I. Seki, D.V. Louzguine-Luzgin, and A. Inoue, Crystallization and Embrittlement Behavior of a Zr55Al10Ni5Cu30 Metallic Glass Having Different Si and O Contents, Materials Transactions, 48 (2007) 821-825.
[132] G. Lindwall, K. Frisk, Assessment and Evaluation of Mobilities for Diffusion in the bcc Cr-Mo-Fe System, Journal of Phase Equilibria and Diffusion, 33 (2012) 375-389.
[133] J. H. Yun, K. H. Kim, M. S. Kim, B. T. Ahn, S .J. Ahn, J. C. Lee, K. H. Yoon, Fabrication of CIGS solar cells with a Na-doped Mo layer on a Na-free substrate, Thin Solid Films, 515 (2007) 5876-5879.

無法下載圖示 全文公開日期 2020/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE