簡易檢索 / 詳目顯示

研究生: 張耀祖
YAO-TSU CHANG
論文名稱: 以氮化鎵磊晶於矽基板晶圓製作的發光二極體之初步可靠度評估
Preliminary reliability assessment on GaN-on-Si LEDs
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 蘇忠傑
Jung-Chieh Su
陳鴻興
Hung-Shing Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 135
中文關鍵詞: 監控led可靠度發光二極體
外文關鍵詞: lightpower, Blue led
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此篇論文是使用商用氮化鎵磊晶於矽基板,磊晶結構為藍光發光二極體之晶圓製作積體化發光二極體(LED)和監控光偵測器(MPD)元件,以兩片不同廠商製作的晶圓,相同製程步驟和相似的製程參數製作,並做光電特性量測。再做成模組,透過藍芽連接模組電路和手機app,以遠端監控的方式控制LED操作電壓,讓LED光功率在使用者設定之目標光功率上保持定值,過程中同時儲存每次實驗操作上重要的數據,不只可以直接在手機上作圖給使用者觀看,也可以上傳數據至雲端並做資料分析。由於氮化鎵與矽晶有晶格常數和熱膨脹係數不匹配的問題,接著測試LED的可靠度,在室溫下進行共兩部分實驗測試,第一片晶圓元件總共操作時間900分鐘,分別為恆定光功率0.8mW下,共測試300分鐘,以及光功率恆定在1.0mW下,共測試600分鐘。第二片晶圓元件總共操作時間1300分鐘,分別為恆定光功率3mW下,共測試300分鐘,以及光功率恆定在5mW下,共測試1000分鐘。觀察兩片不同廠商的晶圓所製作的元件在操作期間中的表現差異和是否有衰退狀況出現,還有可靠度測試實驗前後元件光電特性的變化,包括I-V、L-I特性曲線、光譜和監控響應率等。
在光電特性量測上,可靠度測試實驗前, 第一片晶圓LED的啟動電壓約為2.9 V,在電流 50 mA下的光功率約為1.1 mW,串聯電阻約20~35 Ω,峰值波長約為476 nm,半高寬約為21.5 nm。MPD無偏壓下的暗電流約為1.64×10-10 A,在LED電流 50 mA下的照光電流約為5.44×10-5 A,響應率約為4.6× 10-2 A/W。第二片晶圓LED的啟動電壓約為2.7 V,在電流 50 mA下的光功率約為5.5 mW,串聯電阻約7~14 Ω,峰值波長約為449 nm,半高寬約為19.6 nm。MPD無偏壓下的暗電流約為2×10-11 A,在LED電流 50 mA下的照光電流約為5×10-4 A,響應率約為9 × 10-2 A/W。相比較陳敬樺學長所製作的氮化鎵磊晶於藍寶石基板上所做出MPD的響應率約在2 × 10-2 A/W,此篇元件的響應率較高,歸因於氮化鎵磊晶於矽基板時的緩衝層結構有較高的反射率。
初步可靠度測試過程中,兩片晶圓元件都沒有明顯衰退的現象出現。可靠度實驗後兩片晶圓的LED基本光電特性與之前大部分都相似,且光功率兩片都上升了約20%,表示此初步可靠度測試相當於是LED的燒入測試,元件特性變得更好。而MPD操作在無偏壓下,第一、二片晶圓的響應率分別有15%與10%的略微降低,可能是MPD在可靠度測試前尚未達穩定,其變化幅度尚可接受。


This study used commercial wafers of GaN epitaxy grown on silicon substrate (GaN-on-Si) to fabricate integrated light-emitting diodes (LEDs) and monitor photodetectors (MPD) devices. The epitaxy structure was for blue light-emitting diodes. Two wafers grown by different manufacturers were processed with the same processing steps and similar processing parameters, and the photoelectric characteristics were measured. To make a module with these devices, I connected the module circuit which communicated the mobile app through Bluetooth, and controlled the LED operating voltage by remotely monitoring MPD photocurrent, so that the LED optical power can maintain a constant target optical power set by the user. The retrieved data in the experiment can be directly plotted on the mobile phone for users to view, and uploaded to the cloud for data analysis. Due to the mismatch of lattice constant and thermal expansion coefficient between gallium nitride and silicon crystals, the reliability of the GaN-on-Si LED was evaluated. Two parts of the experiment were carried out at room temperature. The total operating time of each of the first wafer devices was 900 minutesincluding at a constant optical power of 0.8 mW for a total of 300 minutes, and at a constant optical power of 1.0 mW for a total of 600 minutes. The total operation time of each of the second wafer devices was 1300 minutes including at a constant optical power of 3 mW for a total of 300 minutes, and at a constant optical power of 5 mW for a total of 1000 minutes. Whether there is any degradation during the operation period of the devices made of two wafers from different manufacturers were monitored, as well as the changes in the optoelectronic characteristics of the devices before and after the reliability experiment, including I-V, L-I curves, spectra and monitoring responsivity etc.
In terms of photoelectric characteristics, before the reliability experiment, the turn-on voltage of the LED of the first wafer was about 2.9 V, the optical power at a current of 50 mA was about 1.1 mW, the series resistance was about 20~35 Ω, the peak wavelength was about 476 nm, and the full width at half maximum (FWHM) was about 21.5 nm. The dark current of MPD under zero bias voltage was about 1.64×10-10 A, the illuminated current under LED illumination at 50 mA was about 5.44×10-5 A, and the responsivity was about 4.6×10-2 A/W. The turn-on voltage of the LED of the second wafer was about 2.7 V, the optical power was about 5.5 mW at a current of 50 mA, the series resistance was about 7-14 Ω, the peak wavelength was about 449 nm, and the FWHM was about 19.6 nm. The dark current of MPD under zero bias voltage was about 2×10-11 A, the illuminated current under LED illumination at 50 mA was about 5×10-4 A, and the responsivity was about 9×10-2 A/W. Compared with the responsivity of the MPD made by Chen Jinghua using GaN-on-sapphire wafer of about 2 × 10-2 A/W , the responsivity of the MPD in this article was higher. It was attributed to that the buffer layer structure of GaN-on-Si wafer has a higher reflectivity.
During the preliminary reliability experiment, there was no obvious degradation of the devices of both wafers. After the reliability experiment, the basic photoelectric characteristics of the LEDs of the two wafers were similar to the previous ones except the optical power of all LEDs of both wafers had increased by about 20%, indicating that this reliability experiment was equivalent to the burn-in test of LED which usually makes the component characteristics become better. However, the responsivities of the MPDs under zero bias voltage of the first and second wafers were slightly reduced by 15% and 10%, respectively. It may be resulted from that the MPDs were not stabilized before the reliability experiment, and the change ratios were acceptable.

摘要 I Abstract III 誌謝 III 目錄 VI 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1 前言與研究動機 1 1.2 文獻回顧 3 第二章 光偵測器理論與儀器設備介紹 23 2.1 光偵測器工作原理 23 2.2 光偵測器種類 25 2.2.1 p-n 接面光二極體(p-n Photodiode) 25 2.2.2 p-i-n 接面光電二極體(p-i-n photodiode) 27 2.2.3 蕭基位障光電二極體(Schottky barrier photodiode) ………………………………………………………30 2.2.4 雪崩型光二極體(Avalanche photodiode) 31 2.2.5 異質接面光二極體(Heterojunction photodiode) 34 2.2.6 光電晶體(Phototransistor) 35 2.3 光偵測器檢測參數 37 2.3.1 量子效率(Quantum Efficiency, QE) 37 2.3.2 響應率(Responsivity, R) 40 2.3.3 響應速度(Response Speed) 40 2.4 製程儀器介紹 41 2.4.1 快速升溫退火爐(Rapid Thermal Annealing system , RTA) 41 2.4.2 旋轉塗佈機(Spin coater) 42 2.4.3 光罩對準機(Mask Aligner) 43 2.4.4 電漿增強式化學氣相沉積(Plasma-Enhanced Chemical Vapor Deposition,PECVD) 44 2.4.5 感應耦合電漿反應式離子蝕刻機(Inductively-Coupled Plasma Reactive Ion Etching , ICP-RIE) 45 2.4.6 電子束蒸鍍機(E-beam evaporator) 46 2.4.7 射頻濺鍍機(Radio Frequency sputter,RF sputter) 47 2.5 量測儀器介紹 48 2.5.1 高解析度數位萬用電錶 48 2.5.2 電源供應器(Source Meter) 48 2.5.3 L-I與I-V量測系統 51 第三章 元件設計架構與製程 52 3.1 元件設計 52 3.2 元件製程 54 3.2.1 活化製程 56 3.2.2 高台圖形製程 57 3.2.3 二氧化矽絕緣沉積 59 3.2.4 ITO透明導電層沉積 60 3.2.5 N型和P型電極沉積 61 3.3 Blue LED及MPD基本光電特性量測 62 3.3.1 Blue LED基本光電特性 62 3.3.2 MPD基本光電特性 70 第四章 智慧監控模組的軟體與硬體介紹 76 4.1 模組軟體介紹 76 4.1.1 Arduino 76 4.1.2 MIT App inventor2 79 4.1.3 MIT App inventor2程式方塊 80 4.2 模組硬體介紹 88 4.2.1 Arduino Uno Rev3 88 4.2.2 HC-05藍芽模組 90 4.2.3 LM358 93 4.2.4 MCP4725 94 4.3 智慧監控模組設計 95 4.4 手機app介面設計 99 第五章 初步可靠度測試實驗結果與討論 101 5.1 可靠度(Reliability)介紹 101 5.2 實驗方法 102 5.3 實驗結果分析 104 5.3.1 第一片晶片元件(編號:ATSiBB11)量測 104 5.3.2 第二片晶片元件(編號:LPSIBA7)量測 112 5.4 測試前後特性比較 117 5.4.1 第一片晶片元件(編號:ATSIBB11): 117 5.4.2 第二片晶片元件(編號:LPSIBA7): 123 第六章 結論與未來研究方向 130 6.1 結論 130 6.2 未來展望 132 參考文獻 133

[1] E. Fred. Schubert, “Light Emitting Diode” Cambridge University Press, New York (2006).
[2] http://www.ganhemt.com/jish/36.html GaN材料特性
[3] Chen, Ching-Hua, et al. "Output Power Monitoring of Ultraviolet Light-Emitting Diode via Sapphire Substrate." Photonics. Vol. 7. No. 3. MDPI, 2020.
[4] Chen, Ching-Hua, et al. "Constant Optical Power Operation of an Ultraviolet LED Controlled by a Smartphone." Sensors 21.14 (2021): 4707.
[5] Glaab, Johannes, et al. "Degradation behavior of AlGaN-based 233 nm deep-ultraviolet light emitting diodes." Semiconductor Science and Technology 33.9 (2018): 095017.
[6] Monti, Desiree, et al. "High-current stress of UV-B (In) AlGaN-based LEDs: defect-generation and diffusion processes." IEEE Transactions on Electron Devices 66.8 (2019): 3387-3392.
[7] Jing, Zhou, et al. "Lifetime prediction of ultraviolet light-emitting diodes using a long short-term memory recurrent neural network." IEEE Electron Device Letters 41.12 (2020): 1817-1820.
[8] Monti, Desiree, et al. "Defect-related degradation of AlGaN-based UV-B LEDs." IEEE Transactions on Electron Devices 64.1 (2016): 200-205.
[9] 劉博文,光電元件導論,全威圖書有限公司,臺北,2005
[10] S. O. Kasap, 光電半導體元件 Optoelectronics and Photonics Principles and Practices, 台北: 全威圖書有限公司, 2006.
[11] 劉博文,光電元件導論,全威圖書有限公司,臺北,2005

[12] S. O. Kasap, OPTOELECTRONICS AND PHOTOICS principles and Practices, Peason Education Interational, 2001.
[13] 白世南,光電工程概論.ppt,建國科技大學電子工程系
[14] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr.,B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
[15] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014
[16] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版 社,新竹,2013
[17] 曹永忠,Arduino雲 物聯網系統開發(入門篇),渥瑪數位有限公司,臺灣,2015
[18] 羅皓尹,「MIT App Inventor 在Android 行動裝置之研究 — 設計財產資料庫查詢」,國立交通大學理學院科技與數位學習學程碩士論文,新竹,2015
[19] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, and J. F. Schetzina, “Absorption Coefficient and Refractive Index of GaN, AlN and AlGaN Alloys,” MRS Internet Journal of Nitride Semiconductor Research, vol. 4, no. S1, pp. 502-507, 1999
[20] 王婉瑄.「以奈米壓印微影技術研製氮化鎵分佈回饋式雷射」,國立台灣科技大學電子工程所碩士論文,臺北,2015
[21] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,臺北,2011
[22] 林君翰,「基於Arduino 之感測器量測資料擷取裝置」,國立中央大學土木工程學系碩士論文,桃園,2015
[23] Google Chart
https://developers.google.com/chart/image/docs/gallery/line_charts
[24] 黃義廷,「表面結構化對氮化銦鎵p-i-n光感測器特性之影響」,國立台灣科技大學電子工程所碩士學位論文, 2015
[25] 陳敬樺,「智慧操控紫外光二極體發光功率」,國立台灣科技大學電子工程所碩士學位論文, 2020

無法下載圖示 全文公開日期 2025/02/01 (校內網路)
全文公開日期 2025/02/01 (校外網路)
全文公開日期 2025/02/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE