簡易檢索 / 詳目顯示

研究生: 楊創丞
Chuang-Cheng Yang
論文名稱: 逆偏壓之新式電壓編碼畫素電路設計應用於補償主動式有機發光二極體顯示器電壓漂移及延長其生命期
Novel Pixel Circuit for compensating Threshold Voltage Shift and increasing Lifetime of Active Matrix Organic Light-Emitting Diode by applying Reverse Bias
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee 
王錫九
Shea-Jue Wang
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 123
中文關鍵詞: 有機發光二極體畫素電路
外文關鍵詞: OLED, pixel circuit
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體(AMOLED)由於其優異的特性,近年來受到市場上相當的矚目,像是廣視角、快的反應速度、高對比、高色彩飽和度、和自發光性等等。然而,有機發光二極體在長時間操作下會降低亮度,造成產品生命期縮短,近幾年出現了有關應用逆偏壓延長有機發光二極體生命期之研究。
    而在驅動主動式有機發光二極體顯示器之畫素電路部分,低溫複晶矽薄膜電晶體(LTPS-TFT)扮演著一個重要的角色,由於其優異的電流驅動能力,可以使得畫素電路尺寸微縮,進而達到較大的開口率,提升顯示器品質。然而,低溫複晶矽薄膜電晶體製程過程中,在準分子雷射退火時會造成的電性差異,會使得在相同灰階情況下卻出現電流不一的情況,進而造成顯示器亮度之不均勻,所以開始出現許多補償電路之研究,而近年來此問題被有效改善。因此,在本篇論文中,我們想要設計出一個可以補償電晶體臨界電壓飄移跟有機發光二極體生命期且同時具備高速操作的畫素電路。
    近幾年,金屬氧化物薄膜電晶體(a-IGZO TFT)開始被重視,因為金屬氧化物薄膜電晶體具有介於低溫複晶矽薄膜電晶體(LTPS-TFT)和非晶矽薄膜電晶體(a-Si TFT)之間的電流驅動能力,且製程上有很高的均勻性,適合發展大尺寸的面板。然而,金屬氧化物薄膜電晶體在長時間操作下會造成電性差異,會使得在相同灰階情況下卻出現電流不一的情況,進而造成顯示器亮度之不均勻,所以開始出現許多改善不均勻性的補償電路之研究。因此,在本篇論文中,我們希望讓補償電路能補償薄膜電晶體的不均勻性,同時搭載同步顯示的高速操作(Simultaneous emission)3D驅動時脈,並且使用逆偏壓改善有機發光二極體的生命期。
    鑒於以上動機,我們提出了兩個新型補償畫素電路,分別由低溫複晶矽薄膜電晶體及金屬氧化物薄膜電晶體驅動,同時搭載了高品質的同步顯示(Simultaneous emission)驅動時脈,這兩個電路分別為2.5T0.5C及5T2C,皆經由AIM-SPICE模擬驗證並修改相關參數得到預期之結果。
    第一個畫素電路是由兩個上下畫素所構成。在這個2.5T0.5C畫素電路中,首先其高頻的驅動操作之特性已經由模擬軟體驗證。其平均電流錯誤率在驅動元件臨界電壓偏移±.0.33之情況下小於4%,並且由實驗數據可得出此新型電路可由驅動電流大小決定逆偏壓之大小,進而有效地改善有機發光二極體生命期。由以上敘述顯示,此新型畫素電路成功的在高速驅動操作下有效維持畫面均勻度並且延長有機發光二極體之生命期。在考慮資料線及掃描線之電阻及電容造成的延遲效應,以一個三十吋面板為假設,分析顯示器四個角落之電流誤差,模擬結果顯示電流誤差率小於1.2%。
    在第二個5T2C畫素電路中,其高頻的驅動操作之特性已經由模擬軟體驗證。在驅動元件臨界電壓偏移±3並且有機發光二極體臨界電壓偏移+0.33之極端情況下之電流不均勻性小於11%,並且使用一條原本作為開關訊號的訊號線作為有機發光二極體之逆偏壓,進而改善有機發光二極體之生命期。
    由以上結果顯示,在高速驅動時脈下,補償驅動元件及有機發光二極體的能力有如我們所預期。因此,我們相信在此論文所發表的兩個新型畫素電路是有著相當不錯的穩定電流驅動能力並且能延長有機發光二極體之生命期,同時也是適合於應用在大尺寸和高解析度的主動式有激發光二極體顯示器面板中。


    Recently, active matrix organic light-emitting diode (AMOLED) has attracted a much attention due to its extraordinary properties, such as wide viewing angle, fast response time, high contrast ratio, high color saturation and self-emissive ability. However, luminance of AMOLED decayed after long time operation to lead short lifetime of product. Recently, using the reverse bias to prolong OLED lifetime is investigated.
    In the driving pixel circuit for AMOLED, low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) plays an important part due to its high current driving capability. Since the high current driving capability of LTPS-TFTs, the size of pixel circuit can be minimized to reach higher display quality. However, the various characteristic of LTPS-TFTs due to the excimer laser annealing process, which will further cause the non-uniform driving current under same gray-scale. Hence, many pixel circuit researches are proposed and this issue is effectively ameliorated. Thus, in this thesis, we want to design novel pixel circuits that not only compensate the non-uniformity of TFTs but also the OLED luminance degradation issue, and the high speed operation is also applied in the circuits.
    Recently, Metal Oxide TFT (a-IGZO TFT) is paid much attention because a-IGZO TFT has the current driving capability between LTPS-TFT and a-Si TFT and has great uniformity to fabricate large size display on fabrication process. However, a-IGZO TFT has non-uniform of electrical characteristics under long time operation which will further cause the non-uniform driving current under same gray-scale. Hence, many pixel circuit researches are proposed and this issue is effectively ameliorated. Thus, in this thesis, we want to design novel pixel circuits that can compensate the non-uniformity of TFTs and the stereo 3D effect is also applied in the circuits. The proposed pixel circuit is also applied the reverse bias to ameliorate OLED lifetime.
    Base on above reason, we proposed two compensating pixel circuits are driven by LTPS-TFTs and a-IGZO TFTs respectively and with high quality simultaneous emission (SE) driving scheme. The two proposed pixel circuits are 2.5T0.5C and 5T2C respectively. Through the parameter modulation, these two circuits achieved the performances what we expected and verified by AIM-SPICE.
    The first proposed pixel circuit is composed of an upper of pixel and a lower of pixel. In the 2.5T0.5C pixel circuit, the high speed driving is verified by simulator. The current error rate under various threshold voltage of TFT(ΔVTH = ±0.33 V) is less than 4%. To verify by simulation results, the magnitude of reverse bias which is applied to OLED is determined by the magnitude of driving current in the 2.5T0.5C pixel circuit. Hence, the reverse bias application in the proposed pixel circuit can ameliorate the OLED lifetime effectively. Base on the mention above, the proposed pixel circuit not only offers a stable current to maintain the image uniformity under high speed driving but also prolongs the OLED lifetime effectively. Furthermore, we simulated an assumed 30 inch display with all resistance and capacitance of signal lines. Simulation results demonstrate that the current error rate of four corners of display is less than 1.2%.。
    In the 5T2C pixel circuit, the high speed 3D driving is verified by simulator. The current error rate of this pixel circuit under various threshold voltage of TFT(ΔVTH = ±3 V) and OLED (ΔVTH = +0.33 V) is less than 11%. Furthermore, we utilize a signal line which controls the switch as a signal of reverse bias. Hence, the reverse bias application in the proposed pixel circuit can ameliorate the OLED lifetime effectively.
    Due to the above simulation results, the capability of compensation is achieved as what we expected under high speed driving. Hence, we believed that the two proposed pixel circuits have excellent current driving capability to offer the stable current and prolong OLED lifetime effectively. It is suitable in large size and high resolution AMOLED displays.

    Content 論文摘要 I Abstract IV 致謝 VIII Content IX Figure List XII Chapter 1 Introduction 1 1.1 Organic Light Emitting Diode (OLED) 1 1.1.1 What is OLED? 1 1.1.2 OLED structure and operation 3 1.1.3 Advantages of OLED 6 1.2 Active Matrix Organic Light Emitting Diode (AMOLED) 12 1.2.1 What is AMOLED? 12 1.2.2 AM addressing Pixel Structure on TFT Array and operation 17 1.2.3 Driving device of AMOLED 19 1.3 Stereo displays (Three-dimensional (3D) displays) 23 1.3.1 Stereo vision 23 1.3.2 Stereo (3D) displays 24 1.3.3 Progressive Emission and Simultaneous Emission 34 1.4 Motivation 36 1.4.1 Compensation for threshold voltage of driving TFT 36 1.4.2 Simultaneous emission 38 1.4.3 Compensation for threshold voltage of OLED and amelioration for OLED lifetime 38 1.5 Thesis organization 40 Chapter 2 AMOLED driving 41 2.1 Driving device 41 2.1.1 AIM-SPICE and Device Model 41 2.2 Compensating Method 43 2.2.1 Compensating Methods for AMOLED displays 43 2.2.2 Compensating Methods for 3D AMOLED displays 44 2.2.3 Compensating Methods with a-IGZO TFTs for AMOLED displays 45 2.3 Applying Reverse Bias to alleviate degradation of OLED 47 Chapter 3 2.5T0.5C Pixel Circuit with novel driving scheme to compensate voltage shift and adjustable Reverse Bias to alleviate degradation of OLED 48 3.1 Introduction 48 3.2 Proposed Pixel Circuit scheme & operation 50 3.3 Simulation Results 63 3.4 Summary 80 Chapter 4 5T2C voltage compensating pixel circuit of 3D AMOLED with a-IGZO TFTs and Top Emission Structure using Reverse Bias to alleviate degradation of OLED and TFT 81 4.1 Introduction 81 4.2 Proposed Pixel Circuit scheme & operation 84 4.3 Simulation Results 92 4.4 Summary 100 Chapter 5 Conclusion & Future work 101 5.1 Conclusion 101 5.2 Future work 106 References 107

    Chapter 1
    [1.1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., Vol. 51, pp. 913-915 (1987).
    [1.2] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., PP.7–10 (1998).
    [1.3] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, PP. 315–318.
    [1.4] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, PP. 95 (1996).
    [1.5] C. D. Muller, A. Falcou, N. Reckefuss, et al., “Multi-colour organic light-emitting displays by solution processing,” Nature, Vol. 421, No. 6925, pp. 829-833 (2003).
    [1.6] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., Vol. 28, pp. 1073-1076 (1997).
    [1.7] S. Xiong, B. Guo, C. Wu, Y. Chen, Y. Hao, Z. Zhou, and H. Yang, “A novel design of sub-frame and current driving method for PM-OLED,” in SID Tech. Dig., PP. 1174-1177 (2002).
    [1.8] S. J. Kim and O. K. Kwon, “Low-power driving method and circuit for passive matrix organic electro-luminescent displays,” in Proceedings of International Display Workshops, PP. 1195-1198 (2002).
    [1.9] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., PP. 875-878 (1998).
    [1.10] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, Vol. 1, No. 2, pp. 248–266 (2005).
    [1.11] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., Vol. 39, pp. S291-S295 (2001).
    [1.12] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, pp.597-599 (1983).
    [1.13] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, pp.1672-1674 (1986).
    [1.14] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, pp.185-187 (1987).
    [1.15] K. Nomura 1, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, Vol. 432, pp. 488–492 (2004).
    [1.16] J. S. Yoon, J. M. Lee, Y. H. Lee, D. H. Oh, T. G. Kim, K. H. Oh, and B. S. Kim, “31_inch FHD AMOLED 3-D TV using emission-switch control method,” in SID Tech. Dig., PP. 353–356 (2011).
    [1.17] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690–692 (2004).
    [1.18] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., Vol. 1, No. 1, pp. 100–104 (2005).
    [1.19] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006).
    [1.20] C. L. Fan, Y. S. Lin, and Y. W. Liu, “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes,” IEICE Trans. Electron, Vol. E93-C, pp. 712 (2010).
    [1.21] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED,” Journal of the Korean Physical Society, Vol. 56, p. 1185 (2010).
    [1.22] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu, “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 49, (2010).
    [1.23] C. L. Fan, H. L. Lai, and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Jpn. J. Appl. Phys., Vol. 49 (2010).
    [1.24] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 (2004).
    [1.25] Y. He, R. Hattori, and J. Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays,” Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001).
    [1.26] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 45, pp. 4402–4406 (2006).
    [1.27] H. Lee, J. S. Yoo, C. D. Kim, I. J. Chung, and J. Kanicki, “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices,” Jpn. J. Appl. Phys., Vol. 46, pp. 1343–1349 (2007).
    [1.28] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., PP. 912–915 (2000).
    [1.29] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007).
    [1.30] C. K. Kang, S. M. Choi, Y. S. Park, et al., “A new pixel circuit for oxide TFT based AMOLED displays,” in IMID Symp. Dig., PP. 125–126 (2010).
    [1.31] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    [1.32] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168, (2013).
    [1.33] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., Vol. 10, No. 1, pp. 80-83 (2014).
    [1.34] C. Leng, L. Wang, and S. Zhang, “Two-Transistor Current-Biased Voltage-Programmed AMOLED pixel,” IEEE Electron Device Lett., Vol. 34, No. 10, pp. 1262 – 1264 (2013).
    [1.35] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 (2007).
    [1.36] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    [1.37] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).
    [1.38] K. Y. Lee, Y. P. Hsu, and P. C. P. Chao, “A New 4T0.5C AMOLED Pixel Circuit With Reverse Bias to Alleviate OLED Degradation,” IEEE Electron Device Lett., Vol. 33, No. 7, pp. 1024–1026 (2012).

    Chapter 2
    [2.1] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 260–263 (2004).
    [2.2] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a newvoltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006).
    [2.3] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007).
    [2.4] H. S. Shin, W. K. Lee, S. G. Park, S. H. Kuk, and M. K. Han, “Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 48, p. 03B023 (2009).
    [2.5] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., PP. 912–915 (2000).
    [2.6] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 264–267 (2004).
    [2.7] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 260–263 (2004).
    [2.8] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a newvoltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006).
    [2.9] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007).
    [2.10] H. S. Shin, W. K. Lee, S. G. Park, S. H. Kuk, and M. K. Han, “Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 48, p. 03B023 (2009).
    [2.11] C. L. Fan, Y. S. Lin, and Y. W. Liu, “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes,” IEICE Trans. Electron, Vol. E93-C, 2010, p. 712 (2010).
    [2.12] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED,” Journal of the Korean Physical Society, Vol. 56, p. 1185 (2010).
    [2.13] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu, “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 49 (2010).
    [2.14] C. L. Fan, H. L. Lai, and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Jpn. J. Appl. Phys., Vol. 49, pp. 05EB04-1 –05EB04-4 (2010).
    [2.15] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 (2004).
    [2.16] Y. He, R. Hattori, and J. Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays,” Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001).
    [2.17] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 45, pp. 4402–4406 (2006).
    [2.18] H. Lee, J. S. Yoo, C. D. Kim, I. J. Chung, and J. Kanicki, “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices,” Jpn. J. Appl. Phys., Vol. 46, pp. 1343–1349 (2007).
    [2.19] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    [2.20] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” in Proc. SID Tech. Dig., PP. 758–761 (2010).
    [2.21] J. L. Sanford and F. R. Libsch, “TFT AMOLED pixel circuits and driving methods,” in Proc. SID Tech. Dig., PP. 10–13 (2003).
    [2.22] C. Chen, J. Kanicki, K. Abe, and H. Kumomi “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in Proc. SID Tech. Dig., PP. 1128–1131 (2009).
    [2.23] Y. W. Jeon, S. Kim, S. Lee, et al., “Subgap density-of-states-based amorphous oxide thin film transistor simulator (DeAOTS),” IEEE Trans. Electron Devices, Vol. 57, No. 11, pp. 2988–3000 (2010).
    [2.24] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., PP. 1037–1040 (2010).
    [2.25] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., Vol. 31, No. 9, PP. 963–965 (2010).
    [2.26] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [2.27] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    [2.28] A. Giraldo, M. J. Childs, D. Fish, M. T. Johnson, M. Klein, H. Lifka, W. Oepts, W. A. Steer, and N. D. Young, “Optical feedback in active matrix polymer OLED displays,” in Proc. 16th Annu. Meeting IEEE LEOS, 2003, Vol. 2, pp. 529–530 (2003).
    [2.29] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka, O. Gielkens, and W. Oepts, “Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies,” in Proc. SID Tech. Dig., PP. 1340–1343 (2005).
    [2.30] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., Vol. 30, No. 4, pp. 377–379 (2009).
    [2.31] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 (2007).
    [2.32] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., Vol. 3, No. 1, pp. 36–39 (2007).
    [2.33] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett.,Vol. 25, No. 11, pp. 728–730 (2004).
    [2.34] S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Trans. Electron Devices, Vol. 50, No. 4, pp. 1137–1140 (2003).
    [2.35] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No. 12, pp. 856–859 (2005).
    [2.36] D. Zou, M. Yahiro, and T. Tsutsui, “Improvement of current–voltage characteristics in organic light emitting diodes by application of reversed-bias voltage,” Jpn. J. Appl. Phys., Vol. 37, No. 11A, pp. L1 406–L1 408 (1998).
    [2.37] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).
    [2.38] K. Y. Lee, Y. P. Hsu, and P. C. P. Chao, “A New 4T0.5C AMOLED Pixel Circuit With Reverse Bias to Alleviate OLED Degradation,” IEEE Electron Device Lett., Vol. 33, No. 7, pp. 1024–1026 (2012).

    Chapter 3
    [3.1] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, “Polysilicon VGA active matrix OLED displays—technology and performance,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM ’98), PP. 871–874 (1998).
    [3.2] B. T. Chen, Y. J. Kuo, C. C. Pai, C. C. Tsai, H. C. Cheng, and Y. H. Tai, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” in Proceedings of the International Display Manufacturing Conference and Exhibition (IDMC ’05), PP. 378–381 (2005).
    [3.3] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, Vol. 46, No. 12, pp. 2282–2288 (1999).
    [3.4] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-Si thin film transistors,” IEEE Electron Device Lett., Vol. 24, No. 7, pp. 457–459 (2003).
    [3.5] S. H. Jung, W. J. Nam, and M. K. Han ,”A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690–692 (2004).
    [3.6] C. L. Lin, Y. C. Chen “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 (2007).
    [3.7] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, Vol. 54, No. 3, pp. 462–467 (2007).
    [3.8] W. J. Wu, L. Zhou, R. H. Yao, and J. B. Peng, “A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays,” IEEE Electron Device Lett., Vol. 32, No. 7, pp. 931-933 (2011).
    [3.9] H. J. In and O. K. Kwon, “Novel Driving Method for Two-Dimensional and Three-Dimensional Switchable Active Matrix Organic Light-Emitting Diode Displays for Emission and Programming Time Extension,” Jpn. J. Appl. Phys., Vol. 51, No.3s (2012).
    [3.10] J. S. Yoon, J. M. Lee, Y. H. Lee, D. H. Oh, T. G. Kim, K. H. Oh, and B.S. Kim, “31_inch FHD AMOLED 3-D TV using emission-switch control method,” in SID Tech. Dig., pp. 353–356 (2011).
    [3.11] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS pixel circuit with AC driving method to reduce OLED degradation for 3D AMOLED displays,” J. Display Technol., Vol. 8, No. 12, pp. 681–683 (2012).
    [3.12] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., Vol. 3, No. 1, pp. 36–39 (2007).
    [3.13] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., Vol. 30, No. 4, pp. 377–379, (2009).
    [3.14] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 (2004).
    [3.15] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No. 12, pp. 856–859 (2005).
    [3.16] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).

    Chapter 4
    [4.1] C. Chen, J. Kanicki, K. Abe, and H. Kumomi “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in Proc. SID Tech. Dig., PP. 1128–1131 (2009).
    [4.2] Y. W. Jeon, S. Kim, S. Lee, et al., “Subgap density-of-states-based amorphous oxide thin film transistor simulator (DeAOTS),” IEEE Trans. Electron Devices, Vol. 57, No. 11, pp. 2988–3000, (2010).
    [4.3] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., PP. 1037–1040 (2010).
    [4.4] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., Vol. 31, No. 9, pp. 963–965 (2010).
    [4.5] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    [4.6] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [4.7] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” in SID Tech. Dig., PP. 758–761 (2010).
    [4.8] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168 (2013).
    [4.9] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., Vol., 10, No. 1, pp. 80-83 (2014).
    [4.10] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    [4.11] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., Vol. 3, No. 1, pp. 36–39 (2007).
    [4.12] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., Vol. 30, No. 4, pp. 377–379 (2009).
    [4.13] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 (2004).
    [4.14] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No. 12, pp. 856–859 (2005).
    [4.15] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).

    Chapter 5
    [5.1] W.J. Wu, L. Zhou, R, H, Yao, and J, B, Peng, “A New Voltage-Programmed Pixel Circuit for Enhancing the Uniformity of AMOLED Displays ,” IEEE Electron Device Lett., Vol. 32, No. 7, pp. 931–933 (2011).
    [5.2] C. L. Lin, W.Y. Chang, C.C. Hung, and C. Da. Tu, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    [5.3] K. Y. Lee, Y. P. Hsu, and P. C. P. Chao, “A New 4T0.5C AMOLED Pixel Circuit With Reverse Bias to Alleviate OLED Degradation,” IEEE Electron Device Lett., Vol. 33, No. 7, pp. 1024–1026, (2012).
    [5.4] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [5.5] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168 (2013).

    無法下載圖示 全文公開日期 2019/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE