簡易檢索 / 詳目顯示

研究生: 施宏錡
Hung-chi Shui
論文名稱: 製作新型高填充率雙曲率微透鏡與用於有機發光二極體之研究
Fabrication and application of novel high fill factor dual-curvature microlens to organic light emitting diode
指導教授: 趙振綱
Ching-Kong Chao
林宗鴻
Tsung-Hung Lin
口試委員: 張瑞慶
Rwei-Ching Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 有機發光二極體全反射高填充率微透鏡外型雙曲率微透鏡
外文關鍵詞: organic light emitting light diode, total internal reflection, high fill factor, shapes of microlens, dual-curvature microlens
相關次數: 點閱:226下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體由於具有輕薄、省電等優勢,近來已成為最熱門的顯示技術,但因其玻璃基板與空氣介面間之全反射現象嚴重,而影響了發光效率,此問題可藉由裝置微透鏡陣列後,改變介面的臨界角而獲得改善。本論文以模擬的方式比較不同形狀之高填充率光學微透鏡陣列,運用於有機發光二極體時,對於發光強度和視角的提升,比較的透鏡形狀包含三角形、四角形、六角形和結合三角形及六角形的新型雙曲率微透鏡,透鏡的參數包含了高度、半徑以及曲率半徑,而曲率半徑會直接影響透鏡的曲面,進而影響透鏡與空氣介面的臨界角,因此特別定義另一參數高徑比(height ratio)作為各形狀透鏡之比較基準,高徑比之定義為透鏡高度與曲率半徑的比值,而高徑比越高透鏡外型就越接近球型。
    在光學模擬中比較裝置相同高徑比之各形狀微透鏡後,有機發光二極體的光強增益,結果顯示在高徑比0.13和0.26兩組高徑比較低的數據中,光強增益大小順序為:三角>四角>雙曲率>六角;在0.48的高徑比下之順序為:雙曲率>六角>四角>三角;而在高徑比0.69及0.84兩組高徑比較高的數據中,光強增益大小順序則為:六角>雙曲率>四角>三角,造成以上結果的原因為不同形狀的微透鏡,其臨界角的範圍也不同,若比較透鏡最外圍的最小臨界角,可發現當高徑比由低到高增加時,各形狀透鏡的最小臨界角之變化趨勢與光強增益吻合,呈現反轉的趨勢,顯示形狀會改變透鏡臨界角範圍,進而影響光強增益,此外不同形狀的透鏡在基材面積內的透鏡數的差異,也會使最小臨界角對光強增益的影響放大。
    雖然在較高的高徑比中,六角形微透鏡有最佳的光強增益,但欲製作高徑比較高的透鏡,必須縮小透鏡半徑及增加透鏡高度,對於製程條件的要求較嚴苛,製作的難度也較高,而雙曲率微透鏡在目前文獻中常見的高徑比範圍,約0.32~0.56內有佳的光強增益,當高徑比為0.48時,雙曲率微透鏡可提升22%的軸向光強增益,因此雙曲率微透鏡不失為一經濟的解決方案。實驗部分,本研究利用近接曝光法製作雙曲率微透鏡之模仁,並將製作完成後的試片以光學顯微鏡、掃描式電子顯微鏡及三維表面輪廓儀作量測,以確認製作的雙曲率微透鏡模仁之外型。


    Organic light emitting diode (OLED) has become the most popular display technology recently due to its lower thickness and less energy consumption. However, the total internal reflection, which happens on the interface between glass substrate and air, decreases the luminance efficiency of OLED. This issue can be solved by applying microlens array to OLED, and thus changing critical angle of interface.
    This thesis presents a way to compare the different shapes of high fill factor microlens array for both increasing luminance efficiency and improving viewing angle of OLED by simulation. The lens shapes include triangle, square, hexagon and dual-curvature which is a novel shape composed of triangle and hexagon. In order to compare lens with different shapes fairly, the height ratio of lens are keeping identical. Height ratio is the ratio of lens height and radius curvature of lens contour. The result of simulation differs while height ratio changes. The ranking of lens shapes for increasing luminance of OLED in lower range like 0.13 and 0.27:triangle>square>dual-curvature>hexagon. In middle range like 0.48: dual-curvature> hexagon>square>triangle In higher range like 0.69 and 0.84: hexagon>dual-curvature >square>triangle. For different shapes of lens, the range of critical angle will be different as well. The smallest critical angle of these lens shows similar trend to the result of simulation with increasing height ratio. Since lens shape will change critical angle of interface, so it will also affect the performance of OLED. Besides, the numbers of lens within the area of substrate can cause more performance differences between different shapes of lens.
    Although in the higher range of height ratio, hexagonal microlens array increased the most luminance of OLED. It is much harder to fabricate microlens array with high height ratio which usually having smaller diameter and larger lens height. While dual-curvature microlens array increase the most luminance of OLED within the more commonly seen range of 0.32~0.56 in literary. A dual-curvature microlens array with 0.48 of height ratio can boost axial luminance up to 22%. Therefore, dual-curvature microlens array will be an economical solution.
    In terms of experiment, this thesis utilizes the method of UV proximity exposure to fabricate dual-curvature microlens array mold insert. Then the completed specimen is examined by using optical microscope, scanning electron microscope and 3D profiler.

    中文摘要......................................... I 英文摘要......................................... II 誌謝............................................ III 目錄............................................ IV 表目錄.......................................... XI 圖目錄.......................................... VII 第一章導論....................................... 1 1-1 有機發光二極體(OLED)簡介....................... 1 1-2有機發光二極體(OLED)結構與發光原理 ................2 1-3 有機發光二極體(OLED)的發光效率.................. 4 1-4 提高外量子效率的常用方法 ........................7 1-5 微透鏡之介紹.................................. 9 1-6 文獻回顧..................................... 12 1-7 研究動機與目的 ................................15 1-8 論文架構..................................... 16 第二章 基礎理論................................... 18 2-1 反射和折射................................... 18 2-2 光度學單位................................... 21 2-3 光學模擬軟體介紹.............................. 23 第三章 微透鏡之光學模擬............................ 25 3-1 光學模擬軟體TracePro操作流程................... 25 3-2 有機發光二極體(OLED)及微透鏡模型之建立........... 27 3-2-1有機發光二極體(OLED)模型建立.................. 27 3-2-2 微透鏡模型建立.............................. 30 3-3 微透鏡之結構設計與參數變異...................... 34 3-4 光源設定..................................... 37 3-5 輸出資料選定.................................. 38 3-6 模型驗證..................................... 40 3-6-1 分析光線數測定.............................. 40 3-6-2 有機發光二極體(OLED)模型之外量子效率........... 42 第四章 雙曲率微透鏡陣列模仁製作...................... 44 4-1 黃光微影製程.................................. 44 4-2 製程參數設定.................................. 50 4-3 實驗量測設備.................................. 51 第五章 光學模擬與微透鏡實驗之結果與討論 ................54 5-1 光學模擬結果.................................. 54 5-1-1 軸向光強增益 ................................54 5-1-2 光強對應視角分佈............................ 59 5-2 模擬結果討論.................................. 68 5-2-1 微鏡形狀對臨界角之影響........................ 68 5-2-2 高徑比對臨界角之影響......................... 71 5-2-3 臨界角範圍與光強增益之關係.................... 72 5-2-4雙曲率微透鏡之優勢............................ 77 5-3 實驗結果與討論................................ 78 第六章 結論與未來展望.............................. 83 6-1 結論........................................ 83 6-2 未來展望..................................... 84

    [1]陳金鑫, 黃孝文, OLED:有機電激發光材料與元件, 五南出版社, (2005).
    [2]徐玉娟, 系統與週邊, 財團法人資訊工業策進會資訊市場情報中心, 台北, (2000).
    [3]上海大洲電子材料有限司, http://www.daejoo.co.kr
    [4]H. Y. Lin, Y. H. Ho, J. H. Lee, K.Y. Chen, J. H. Fang, S. C. Hsu, M. K. Wei, H. Y. Lin, J.H. Tsai, and T. C. Wu, "Patterned microlens array for efficiency improvement of small-pixelated organic light-emitting devices", Opt. Express, vol. 16, pp. 11044-11051, (2008).
    [5]許吉成, 以橢圓透鏡增加光纖訊號耦合效率之研究, 碩士論文, 國立台灣科技大學, 台北, (2006).
    [6]C. T. Pan and C. H. Su, "Fabrication of gapless triangular micro-lens array", Sensors and Actuators A: Physical, vol. 134, pp. 631-640, (2007).
    [7]C. Fossati, O. Gagliano, M. Commandre and B. Dunne, "Microlens design for CMOS image sensor", vol. 5962, pp. 596229-8, (2005).
    [8]J. Y. Hu, C. P. Lin, S. Y. Hung, Y. H. Yang and C. K. Chao, "Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency", Sensors and Actuators A: Physical, vol. 147, pp. 93-98, (2008).
    [9]amsTECHNOLOGIES, http://www.amstechnologies.com/
    [10]S. Moller, and S. R. Forrest, "Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays", Journal of Applied Physics, vol. 91, pp. 3324-3327, (2002).
    [11]M. K. Wei, and S. I. Lin, "Method to evaluate the enhancement of luminance efficiency in planar OLED light emitting devices for microlens array", Opt. Express, vol. 12, pp. 5777-5782, (2004).
    [12]H. Peng, Y. L. Ho, X. J. Yu, M. Wong, and H. S. Kwok, "Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array-Theory and Experiment", J. Display Technol., vol. 1, p. 278, (2005).
    [13]K. Hyouk, Y. Youngjoo, C. H. Jeong, H. J. Nam, K. W. Park, G. W. Lee, and J. U. Bu, "Microlens Array Film with Full Fill Factor for Enhancing Outcoupling Efficiency from OLED Lighting", presented at the Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 1091-1094. (2007).
    [14]Wikipedia, http://zh.wikipedia.org/wiki/
    [15]李冠卿, 近代光學, 聯經出版社, 台北, (1988).
    [16]岸川利郎著, 杜光宗編譯, 光學入門, 建宏出版社, 基隆, (2000).
    [17]百度文庫, http://wenku.baidu.com
    [18]胡國文, 民用建築電器技術與設計, 清華大學出版社, 北京, (2005).
    [19]楊建人, 光學原理, 徐氏基金會, 台北, (1996).
    [20]EEFOCUS, http://www.eefocus.com/book/
    [21]APIC愛發股份有限公司, http://www.apic.com.tw/
    [22]曾少澤, 次微米光柵結構於發光二極體表面之研究, 碩士論文, 國立中央大學, 中壢, (2009).
    [23]H. Y. Lin, J. H. Lee, M. K. Wei, K. Y. Chen, S. C. Hsu, Y. H. Ho, C. Y. Lin and T. C. Wu, "Optical characteristics of the OLED with microlens array film attachment", San Diego, CA, USA, 66551H-6. (2007).
    [24]M. K. Wei, H. Y. Lin, J. H. Lee, K. Y. Chen, Y. H. Ho, C. C. Lin, C. F. Wu, H. Y. Lin, J. H. Tsai and T. C. Wu, "Efficiency improvement and spectral shift of an organic light-emitting device with a square-based microlens array", Optics Communications, vol. 281, pp. 5625-5632, (2008).
    [25]ATIS, http://www.atis.org/
    [26]OLED and DISPLAY.NET, http://www.oled-display.net/
    [27]吳志偉, 微影製程, 國立海洋大學機械與機電工程系, 基隆, 2005/11/02.
    [28]柯富祥, 楊金成, 盧永坤, 黃慧玲, 朱鐵吉, I-line修飾光阻之熱分析及微影參數粹取之研究, 奈米通訊, 第五卷第四期, (1998).
    [29]Georgia Tech College of Engineering, http://www.ece.gatech.edu/
    [30]林哲平, 以類LIGA製程開發新型光學微透鏡陣列模仁之研究, 博士論文, 國立台灣科技大學, 台北, (2004).
    [31]C. P. Lin, H. Yang and C. K. Chao, "A new microlens array fabrication method using UV proximity printing", Journal of Micromechanics and Microengineering, vol. 13, pp. 748-757, (2003).
    [32]材料世界網, http://www.materialsnet.com.tw/
    [33]百賀儀器, http://www.bh17.net/zh-tw/
    [34]K. H. Liu, M. F. Chen, C. T. Pan, M. Y. Chang and W. Y. Huang, "Fabrication of various dimensions of high fill-factor micro-lens arrays for OLED package", Sensors and Actuators A: Physical, vol. 159, pp. 126-134, (2010).

    QR CODE