簡易檢索 / 詳目顯示

研究生: 陳思潔
Szu-Chieh Chen
論文名稱: 應用奈米碳管於發光二極體封裝之基板設計與製作
Design and Fabrication of Silicon Submount with Aligned Carbon Nanotubes for LED packaging
指導教授: 李三良
San-Liang Lee
口試委員: 邱逸仁
Yi-Jen Chiu
曹恆偉
Hen-Wai Tsao
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 98
中文關鍵詞: 發光
外文關鍵詞: light emitting diode, package, carbon nanotubes
相關次數: 點閱:220下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

發光二極體PN接面產生之高熱,將使面臨亮度降低、壽命減短且放射光往長波長位移等嚴重問題,因此本論文提出直線奈米碳管封裝基板之設計與應用,可改善發光二極體散熱問題。利用氫氧化鉀濕蝕刻的方式,在矽(100)基板上蝕刻出立體U型溝槽,並使用熱化學氣相沉積法,在溝槽內部成長高密度且高長度之直線奈米碳管,最後利用金錫合金將發光二極體晶粒黏著於本論文設計之奈米碳管封裝基板,完成封裝製程。
擁有高熱傳導特性與高導電性之直線奈米碳管,結合矽基板製成之封裝基板,在無散熱器輔助下量測,使發光二極體之平均飽和電流至170 mA,發光功率達29 mW,與封裝於一般矽基板之量測結果做比較,可將操作飽和電流達到160 mA以上之機率,由26%提高至55%。
在熱阻量測結果方面,封裝後整體熱阻值為43 ℃/W,此值為銀膠封裝的32%,金錫合金封裝於一般基板的60%,而連續電流量測使發光功率提升20%以上。結果顯示我們成功製作奈米碳管封裝基板,使發光二極體能夠操作到更高電流,發光功率提升,封裝整體熱阻值降低,接面溫度下降,受高熱影響程度減低,提高整體良率。


In light emitting diode (LED) packages for solid-state lighting, poor heat dissipation causes the problem of low efficiency, wavelength shift, and short life time. The design and application of the Si sub-mount with vertically aligned carbon nanotubes for thermal management of LED packaging is proposed so that the heat dissipation of LED can be significantly improved. The 3D U-type groove is fabricated by KOH wet etching on the Si sub-mount. High density, well aligned vertical CNT arrays were synthesized inside the U-type groove by the thermal chemical vapor deposition (CVD) method. Finally, Au-20Sn solder was applyed in the LED bonding and the package process is completed.
For optical measurement without heat sink setup, the light performance measurement of LED packages using the Si sub-mount with vertically aligned carbon nanotubes was tested. The result shows that the average saturation current is 170 mA. The optical power is above 29 mW. The percentage of having >160 mA saturation current is enhanced from 26% to 55% by using the proposed scheme, compared with the LED packages on the conventional Si sub-mount.
For CW measurement with heat sink setup, the result shows that the saturation current is 290 mA which is larger than the values for LED packages with commercial silver epoxy and Au-20Sn solder, respectively. It has up to 1.2 times more optical output power than that of the LED packages without using CNTs.
The thermal resistance of LED packages using the Si sub-mount with vertically aligned carbon nanotubes was found to be 43 ℃/W which is only 32% and 60% of the values for LED packages with commercial silver epoxy and Au-20Sn solder, respectively. It was concluded that the heat dissipation of LED package was greatly improved with the use of the Si sub-mount with vertically aligned carbon nanotubes.

摘要 I Abstract II 致謝 IV 目錄 VII 圖表目錄 X 第一章 導論 1 1-1 發光二極體的應用與封裝發展 1 1-2 熱對發光二極體之影響 3 1-3 發光二極體封裝技術的演進 5 1-4 研究目的與動機 14 1-5 論文架構 15 第二章 發光二極體與奈米碳管之原理及特性 16 2-1 發光二極體發光原理與其發光效率 16 2-2 發光二極體散熱原理 20 2-3奈米碳管之原理與特性 28 第三章 奈米碳管應用於封裝基板之設計與分析模擬 35 3-1 應用奈米碳管於封裝改善散熱之文獻回顧 35 3-2 奈米碳管封裝基板之設計概念 41 3-3 奈米碳管封裝基板之設計架構 42 3-4 熱傳導分析模擬 44 3-5 分析模擬結果與討論 49 第四章 奈米碳管應用於封裝矽基板之製作 56 4-1 封裝基板之材料選擇 56 4-2 封裝基板的光罩設計 57 4-3 奈米碳管應用於U型溝槽矽基板之製程 59 4-4 奈米碳管封裝基板之封裝製程 71 第五章 量測結果與討論 80 5-1 量測架構介紹 80 5-2 無Heat Sink輔助下輸入電流L-I-V量測結果 82 5-3 無Heat Sink輔助下量測之飽合電流分析 84 5-4 熱阻量測結果 85 5-5 Heat Sink輔助下連續輸入電流L-I-V量測結果 89 第六章 結論 92 6-1 成果與結論 92 6-2 未來研究方向 93 參考文獻 95

[1] M. Arik, J. Petroski, and S. Weaver, “Thermal challanges in the
future generation solid state lighting applications : light emitting
diodes,” Proceedings of IEEE: The International Society Conference
on Thermal Phenomena, pp. 113-120, 2002.
[2] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal management
of LEDs : package to system,” Proceedings of SPIE, vol. 5187, pp.
64-75, 2004.
[3] S. Chhajed, Y. Xi, Y. L. Li, Th. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color -rendering properties of trichromatic white-light sources based on light-emitting diodes,” Journal of Applied Physics, vol. 97, pp. 054506-054513, 2005.
[4] M. Arik, A. Setlur, S. Weaver, D. Haitko, and J. Petroski, “hip to system levels thermal needs and alternative thermal technologies for high brightness LEDs,” ASME Journal of Electronic Packaging, vol. 129, pp. 328-338, 2007.
[5] Lumileds, www.lumileds.com/technology, 2005.
[6] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proceedings of SPIE, vol. 6198, pp. 61980B-1-61980B-12, 2006.
[7] www.electronics-cooling.com/articles/2003/2003_november_a1.php
[8] K. Zhang, Y. Chai, M. M. F. Yuen, D. G. W. Xiao, and P. C. H. Chan, “Carbon nanotube thermal interface material for high-brightness light-emitting diode cooling,” Nanotechnology, vol. 19, pp. 215706-215714, 2008.
[9] 王誌賢, Design and fabrication of flip-chip blue light emitting diodes,碩士論文, 國立台灣科技大學, 2008.
[10] W. S. Wong, A. B. Wengrow, Y. Cho, A. Salleo, N. J. Quitoriano, N. W. Cheung, and T. Sands, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” Journal of Electronic Materials, vol. 28, pp. 1409-1413, 1999.
[11] S. H. Huang, R. H. Horng, S. L. Li, K. W. Yen, D. S. Wuu, C. K. Lin, and H. Liu, “Thermally stable mirror structures for vertical-conducting GaN/mirror/Si light-emitting diodes,” IEEE Photonics Technology Letters, vol. 19, pp. 1913-1915, 2007.
[12] W. C. Peng, and Y. C. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrates fabricated by wafer bonding,” Applied Physics Letters, vol. 84, pp. 1841-1843, 2004.
[13] K. C. Chen, Y. K. Su, C. L. Lin, Y. H. Lu, and W. L. Li, “Thermal management and novel package design of high power light-emitting diodes,” IEEE Electronic Components and Technology Conference, pp. 795-797, 2008.
[14] J. Hu, L. Yang, and M. W. Shin, “Thermal and mechanical analysis of high-power LEDs with ceramic packages,” IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 297-303, 2008.
[15] http://en.wikipedia.org/wiki/LED
[16] 陳隆建, 發光二極體之原理與製程, 全華科技圖書有限公司, 2006.
[17] 張佑銜, 發光二極體的封裝技術, 科學發展月刊,425期, pp.
12-17, March, 2009.
[18] S. Lijima, “Helical microtubules of graphitic carbon,” Letters on Nature, vol. 354, pp. 56-58, 1991.
[19] M. Terrones, “Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes,” Annual Review of Materials Research, vol. 33, pp. 419-501, 2003.
[20] 湯漢文, Surface-Conduction Electron Emitters with Geometrical Structure of Carbon Nanotube Arrays, 碩士論文, 國立台灣科技大學, 2008.
[21] E. W. Wong, P. E. Sheehan, and C. M. Lieber, ”Nanobeam mechanics : elasticity, strength and toughness of nanorods and nanotubes, “ Science, vol. 277, pp. 1971-1975, 1997.
[22] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Physical Review Letters, vol. 87, pp. 215502-215505, 2001.
[23] J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J.E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, “Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films,” Applied Physics Letters, vol. 77, pp. 666-668, 2000.
[24] S. Berber, Y. K. Kwon, and D. Tomanek, “ Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, vol. 84, pp. 4613-4616, 2000.
[25] C. H. Liu, H. Huang, Y. Wu and S. S. Fan, “Thermal conductivity improvement of silicone elastomer with carbon nanotube loading,” Applied Physical Letters, vol. 84, pp. 4248-4250, 2004.
[26] T. Wang, M. Jonsson, E. Nystrom, Z. Mo, E. E. B. Campbell, and J. Liu, “Development and characterization of microcoolers using carbon nanotubes,” IEEE Electronics Systemintegration Technology Conference, vol. 1, pp. 881-885, 2006.
[27] J. Xu, and T. S. Fisher, “Enhancement of thermal interface materials with carbon nanotube arrays, ” International Journal of Heat and Mass Transfer, vol. 49, pp. 1658-1666, 2006.
[28] K. Zhang, G. W. Xiao, C. K. Y. Wong, H. W. Gu, M. M. F. Yuen, P. C. H. Chan, and B. Xu, “Study on thermal interface material with carbon nanotubes and carbon black in high-brightness LED packaging with flip-chip technology,” IEEE Electronic Components and Technology Conference, pp. 60-65, 2005.
[29] Samsung Electro-Mechanics Co., Ltd., “LED package and fabricating method thereof,” United States Patent, Pub. no. 2007/0018190 A1, 2007.
[30] Hon Hai Precison Industry Co., Ltd., “Integrated circuit package with carbon nanotube array heat conductor,” United States Patent, Patent no. 7301232 B2, 2007.
[31] GELcore LLC, “Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking,” United States Patent, Patent no. 686457 B2, 2005.
[32] K. Y. Lee, S. I. Honda, M. Katayama, T. Miyake, K. Himuro, and K. Oura, “Vertically aligned growth of carbon nanotubes with long length and high density,” Journal of Vacuum Science Technology, vol. 23, pp. 1450-145, 2005.
[33] F. Wall, P. S. Martin, and G. Harbers, “High power LED Package Requirments,” Proceedings of SPIE Solid State Lighting, vol. 5187, pp. 85-92, 2004.
[34] H. Huang, C. Liu, Y. Wu, and S. Fan, “Aligned carbon nanotube composite films for thermal management,” Advance Materials, vol. 17, pp. 1652-1656, 2005.
[35] http://www.azom.com/default.asp
[36] G. T. A.Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, pp. 1536-1551, 1998.
[37] H. Seidel, ”The mechanism of anisotropic silicon etching and its relevance for micromachining,” Proceedings of Transducers, pp. 120-125, 1987.
[38] K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, “Anisotropic etching properties of silicon in KOH and TMAH solutions,” IEEE Micromechatronics and Human Science, pp. 65-70, 1998.
[39] Y. Lv, J. Ma, J. Zou, X. Wang, “Research of anisotropic etching in KOH water solution with isopropyl alcohol,” IEEE Communication Circuit Systems, vol. 2, pp. 1779-1783, 2002.
[40] T. T. Seng, D. Sun, H. K. Koay, M. F. Sabudin, J. Thompson, P. Martin, P. Rajkomar, and S. Haque, “Characterization of Au-Sn eutectic die attach process for optoelectronics device,” IEEE Electronics Materials and Packaging, pp. 118-124, 2005.

QR CODE