簡易檢索 / 詳目顯示

研究生: 張毓芸
Yu-Yun Chang
論文名稱: 決定再生瀝青黏結料混合程度與混合現象評估
Determination of Degree of Blending (DoB) and Evaluation of Blending Phenomenon for Recycled Asphalt Binders
指導教授: 廖敏志
Min-Chih Liao
口試委員: 楊亦東
I-Tung Yang
蘇育民
Yu-Min Su
林彥宇
Yen-Yu Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 108
中文關鍵詞: 混合程度原子力顯微鏡試驗線性振幅掃描試驗多重應力潛變恢復試驗拌合圖再生路面刨除料再生瀝青黏結料
外文關鍵詞: Reclaimed Asphalt Pavement, Replaced Virgin Binder, Degree of Blending, Atomic Force Microscopy, Linear Amplitude Sweep, Multiple Stress Creep Recovery, Blending Chart
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來回收瀝青鋪面(Reclaimed Asphalt Pavement, RAP)循環再利用成為備受重視之議題,如何有效地重複使用RAP,達到循環經濟的概念為目前各界共同努力之目標。RAP具有高變異性,主要是由於RAP中老化瀝青可活化的程度(Degree of Activity, DoA)不易評估,可活化的老化瀝青含量會受RAP添加量、RAP中瀝青含量、拌合溫度、拌合時間、以及再生劑添加量等因素影響,進而影響新舊瀝青混合程度(Degree of Blending, DoB)。DoB為再生瀝青混凝土配合設計中非常重要須考量之參數,但此參數目前還尚無法完全確定其數值,通常僅能以推估的方式決定之,因此本研究以評估混合程度為目標,透過使用從兩種不同來源之RAP中萃取還原出之再生瀝青黏結料(Recovered Asphalt Binder, RAB),計算不同之再生瀝青黏結料取代新鮮瀝青之比例(Replaced Virgin Binder, RVB)與新鮮瀝青混合製作出混合瀝青,進行各項基本物性、流變試驗及原子力顯微鏡試驗分析其混合前後之趨勢,並找出再生瀝青之混合程度。根據韌性試驗結果顯示最大瞬間載重隨著再生瀝青取代量上升而逐漸上升,在取代量介於20%~30%時達到最佳值,至取代量大於30%時開始下降;多重應力潛變恢復試驗之結果顯示當取代量大於20%時之混合瀝青已達到可承受重度交通量之標準;線性振幅掃描試驗顯示Nf / ESALs值隨著取代量升高而提升,在取代量介於20%~30%時達到最佳值,而後下降;頻率掃描試驗結果顯示從25℃之主曲線可知僅需使用20%~30%之老化瀝青取代新鮮瀝青,即可大幅改善基底瀝青之性能。由韌性、多重應力潛變恢復試驗及線性振福掃描之結果可得知兩種再生瀝青黏結料之最佳取代量分別為24.8%與22%,再透過公式反推可得知在RAP含量為20%時混合程度約為100%;含量為30%時混合程度約為69%;含量為40%時混合程度約為51.7%。原子力顯微鏡之結果顯示出再生瀝青黏結料微觀結構隨再生瀝青增加而產生峰相(Bee Phase)之崩解,與純瀝青的完整峰相結構截然不同,推測再生瀝青黏結料受萃取過程中所加入之甲苯影響甚大,或是因其他添加劑(如再生劑或改質劑)加入而導致峰相結構顯示崩解。瀝青拌合圖建議應考量韌性、黏結力、車轍以及疲勞等相關平衡性質,傳統仰賴黏滯度之拌合圖恐造成誤判。


In recent years, reclaimed asphalt pavement (RAP) has become a topic of great importance. How to reuse RAP effectively and achieve the concept of circular economy is the goal that all countries are working together to achieve. RAP has high variability, mainly due to the difficulty in assessing the degree of activity (DoA) of aged asphalt in RAP, the activatable aged asphalt content will be affected by many factors including RAP content, asphalt content in RAP, mixing temperature, mixing time, and rejuvenator content, and then affect the Degree of Blending (DoB) of the new and aged asphalt. DoB is a very important parameter to be considered in the design process of recycled asphalt concrete However, it can only be determined by means of theoretical estimation.
Therefore, this study aimed to assess the degree of blending by using the recovered asphalt binder (RAB) extracted from two different sources of RAP, in order to calculate the parameter of RVB (Replaced Virgin Binder). Physical properties, rheological tests and atomic force microscope tests were conducted to evaluate the DoB and the effect of aged binder on the behavior of the recycled asphalt binders. According to the toughness test results, the maximum tensile load increases with the increase in RVB. The toughness possesses a maximum value when the RVB is between 20 and 30%, and begins to decrease when the RVB is greater than 30%.
The results of the multiple stress creep recovery test show that when the RVB is greater than 20%, the blended asphalt binder has reached the criterion that can withstand heavy traffic. The linear amplitude sweep test showed that the Nf / ESALs value increased with the increase in RVB, and reached the optimal value when the RVB is between 20% and 30%. The frequency sweep test results show that the addition of 20~30% of the aged asphalt can greatly improve the viscoelastic properties of the binders. From the results of toughness, multi-stress creep recovery and linear linear amplitude sweep tests, it can be found that the optimal RVB of the two recycled asphalt binders are 24.8% and 22%, respectively. By using the RVB equation, it appears that when the RAP content is 20%, the DoB is about 100%; when the content is 30%, the DoB is about 69%; when the content is 40%, the DoB is about 51.7%. In addition, the results obtained from atomic force microscopy show that the microstructure of recycled asphalt binder exhibits bee phase with disintegration, resulting from the incorporation of aged asphalt binder. It is speculated that the recycled asphalt binder was probably greatly affected by the toluene added during the extraction process, or due to the addition of other additives (such as rejuvenator or modifier). It is suggested that the asphalt blending chart should consider the related balanced performance properties such as toughness, tenacity, rutting and fatigue. The traditional blending chart that relies on viscosity may cause misunderstandings.

摘要 I ABSTRACT III 致謝 V 專有名詞對照表 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究範圍 3 第二章 文獻回顧 4 2.1 再生瀝青特性 4 2.1.1 再生瀝青黏結料(RAB) 4 2.1.2 再生瀝青活化程度 6 2.1.3 再生瀝青混合程度(DoB) 9 2.1.4 再生瀝青混合圖表(Blending Chart) 11 2.1.5 再生瀝青黏結料混合設計 15 2.2 動態剪切流變儀分析 18 2.2.1 疲勞與車轍性能指標 18 2.2.2 線性振幅掃描分析 19 2.2.3 多重應力潛變恢復試驗分析 21 2.3 原子力顯微鏡分析 23 第三章 研究計畫 26 3.1 試驗範圍 26 3.2 研究流程 27 3.3 試驗材料 28 3.3.1 基底瀝青 28 3.3.2 再生瀝青膠泥 28 3.3.3 混合瀝青 29 3.4 試驗方法及設備 31 3.4.1 RAP含油量試驗 31 3.4.2 RAP再生瀝青黏結料萃取試驗 33 3.4.3 針入度試驗 34 3.4.4 軟化點試驗 36 3.4.5 黏滯度試驗 38 3.4.6 韌性試驗 40 3.4.7 頻率掃描試驗 41 3.4.8 線性振幅掃描試驗 42 3.4.9 多重應力潛變恢復試驗 43 3.4.10 原子力顯微鏡試驗 44 第四章 結果與分析 46 4.1 瀝青基本物性分析 46 4.1.1 基底瀝青 46 4.1.2 混合瀝青 48 4.2 流變性能分析 52 4.2.1 MSCR試驗結果 52 4.2.2 LAS試驗結果 56 4.2.3 頻率掃描試驗結果 61 4.3 AFM試驗結果 68 4.4 取代量與黏結料性能相關性分析 75 4.5 確定實際混合程度 82 4.6 建立再改良混合圖表步驟 83 第五章 結論與建議 84 5.1 結論 84 5.2 建議 86 參考文獻 87  

盧祺龍 (2021),「瀝青膠泥微觀表面形貌與疲勞性能研究」,碩士論文,國立臺灣科技大學營建工程系,臺北。
石濟維 (2020),「基於老化瀝青有效反應量之再生瀝青混凝土績效平衡設計」,碩士論文,國立臺灣科技大學營建工程系,臺北。
中華民國國家標準 (2020),「鋪面用改質柏油,CNS 14184:2020 K5150」,經濟部標準檢驗局。
AASHTO T170 (2000) “ Standard Method of Test for Recovery of Asphalt Binder from Solution by Abson Method”, American Association of State Highway and Transportation Officials.
AASHTO TP 101-12 (2018) “ Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep”, American Association of State Highway and Transportation Officials.
ASTM D2172/D2172M-17e1 (2017). “Standard Test Methods for Quantitative Extraction of Bitumen From Bituminous Paving Mixtures”, American Society for Testing and Materials.
ASTM D5/D5M-19 (2019). “Standard Test Method for Penetration of Bituminous Materials”, American Society for Testing and Materials.
ASTM D36/D36M-14 (2014). “Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus)”, American Society for Testing and Materials.
ASTM D4402/D4402M-15 (2015). “Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer”, American Society for Testing and Materials.

ASTM D5801-17 (2017). “Standard Test Method for Toughness and Tenacity of Asphalt Materials”, American Society for Testing and Materials.
ASTM D7515-15 (2015). “Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D7405-15 (2020). “Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer”, American Society for Testing and Materials.
ASTM D3381/d3381M-18 (2018). “Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction” American Society for Testing and Materials.
Ameri, M., Khaki, A, M. and Daryaee, D. (2018). “Evaluation of fatigue behavior of high reclaimed asphalt binder mixes modified with rejuvenator and softer bitumen”, Construction and Building Materials, 191, 702-712.
Anderson, D.A. and Kennedy, T.W. (1993). “Development of SHRP binder specification J. Assoc”, Asphalt Paving Technol., 62 , 481-507.
Castorena, C., Pape, S. and Mooney, C. (2016).“Blending Measurements in Mixtures with Reclaimed Asphalt”, Transportation Research Record: Journal of the Transportation Research Board, 2574, 57–63.
Carrión, J.B., A., Lo Presti, D., Pouget, S. and Chailleux, E. (2017). “Towards non-petroleum derived asphalt mixes: using biobinders for high modulus asphalt mixes with high reclaimed asphalt content.” Transportation Research Board 96th Annual Meeting.
D'Angelo, J. A. (2009). “The relationship of the MSCR test to rutting”, Road Materials and Pavement Design, 10(sup1), 61-80.
Gottumukkala, B., Reddy, K, S., Tandon, V., and Muppireddy, A, R. (2018). “Estimation of Blending of Rap Binder in a Recycled Asphalt Pavement Mix”, Journal of Materials in Civil Engineering, 30(2), 1–8.
Guan, B., Zhang, D., Li, Y., Yao G. and Hao, P. (2017). "Study on fusion mechanism and mechanical properties of new and old asphalt based on atomic force microscope", J. Xi'an Univ. Architect. Sci. Technol., 49 (6), 919-924.
Hafeez, I., Kamal, M.A., Mirza, M.W. and Bilal, S. (2013). “Laboratory fatigue performance evaluation of different field laid asphalt mixtures”, Construction and Building Materials, 44 , 792-797.
Hintz, C. and Bahia, H. (2013). “Simplification of linear amplitude sweep test and specification parameter”, Transportation Research Record, 2370(1), 10-16.
Hintz, C., Velasquez, R., Johnson, C. and Bahia, H. (2011). “Modification and validation of linear amplitude sweep test for binder fatigue specification”, Transportation Research Record, 2207(1), 99-106.
Huang, B., G. Li, D. Vukosavljevic, Shu X. and Egan, B. K. (2005). "Laboratory Investigation of Mixing Hot-Mix Asphalt with Reclaimed Asphalt Pavement." Transportation Research Record: Journal of the Transportation Research Board, 1929(1), pp. 37-45.
Kandhal, P. and Foo, K. (1997).“Designing recycled hot mix asphalt mixtures using superpave technology.”, NCAT Report No.96-5.
Kaseer, F., Arámbula-Mercado, E. and Martin, A. E. (2019), “A method to quantify reclaimed asphalt pavement binder availability (effective RAP binder) in recycled asphalt mixes.” Transportation Research Record: Journal of the Transportation Research Board, 2673(1), pp. 205-216.
Liu, H., Zeiada, W., Al-Khateeb, Ghazi., Shanableh, A. and Samarai, M. (2021). “Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. ” Construction and Building Materials, 269.
Lo Presti, D., Vasconcelos, K., Orešković, M., Pires, G. M. and Bressi, S. (2020), “On the Degree of Binder Activity of Reclaimed Asphalt and Degree of Blending with Recycling Agents”, Road Materials and Pavement Design, 21(8), 2071-2090.
Mannan, U.A., Islam, M, R. and Tarefder, R, A. (2015). “Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies”, Int. J. Fatigue, 78 (2015), 72-80.
McDaniel, R. and Anderson, R. J. N. R. (2000), "Recommended use of reclaimed asphalt pavement in the Superpave mix design method: technician's manual." NCHRP Report 452.
Shirodkar, P., Mehta, Y., Nolan, A., Sonpal, K., Tomlinson, C., Dubois, E., Sullivan, P. and Sauber, R. (2011). “A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt ”, Construction and Building Materials, 25, (1), 150-155.
Shirodkar, P., Mehta, Y., Nolan, A., Dubois, E., Reger, D. and Mccarthy, L. (2013). “Development of blending chart for different degrees of blending of RAP binder and virgin binder.” Resources, Conservation and Recycling, 73. 156-161. 10.1016/j.resconrec.2013.01.018.
Singh, D., Girimath, S. and Ashish, P. K. (2018). “Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests”, Journal of Materials in Civil Engineering, 30(3), 04018004.
Stimilli, A., Virgili, A. and Canestrari, F. (2015). “New method to estimate the “re-activated” binder amount in recycled hot-mix asphalt”, Road Materials and Pavement Design, 16(sup1), 442-459.
Wang, Y. and Zhang, H. (2021). “Influence of asphalt microstructure to its high and low temperature performance based on atomic force microscope (AFM) ”, Construction and Building Materials, 267,120998.
Wasage, T.L.J., Stastna, J. and Zanzotto, L. (2011). “Rheological analysis of multi-stress creep recovery (MSCR) test”, Int. J. Pavement Eng., 12 , 561-568.
Yu, S., Li, P., Zhang, Z. and Shen, S. (2021), “Virgin binder determination for high RAP content mixture design.” Journal of Materials in Civil Engineering, 33(6), 04021112.
Yu, S., Shen, S., Zhang, C., Zhang, W. and Jia, X. (2017), “Evaluation of the blending effectiveness of reclaimed asphalt pavement binder.” Journal of Materials in Civil Engineering, 29(12), 04017230.
Yu, S., Shen, S., Zhou, X. and Li, X. (2018), “Effect of partial blending on high content reclaimed asphalt pavement (RAP) mix design and mixture properties.” Transportation Research Record: Journal of the Transportation Research Board, 2672(28), 79-87.
Zhang, H., Wang, Y., Yu, T. and Liu, Z. (2020). “Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM) ”, Constr. Build. Mater., 255, 119388.
Zhao, S., Huang, B., Shu, X. and Woods, M. E. (2015). “Quantitative characterization of binder blending: how much recycled binder is mobilized during mixing”, Transportation Research Record: Journal of the Transportation Research Board, 2506, 72–80.

無法下載圖示 全文公開日期 2025/01/20 (校內網路)
全文公開日期 2025/01/20 (校外網路)
全文公開日期 2025/01/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE