簡易檢索 / 詳目顯示

研究生: 陳盈盈
Ying-Ying Chen
論文名稱: 應用表面工程技術實現高性能且穩定之高分子奈米摩擦發電元件
Polymer triboelectric nanogenerator with high output performance and good stability enabled by surface engineering
指導教授: 張志宇
Chih-Yu Chang
口試委員: 林宗宏
Zong-Hong Lin
陳良益
Liang‑Yih Chen
吳志明
Jyh-Ming Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 98
中文關鍵詞: 奈米摩擦發電機表面工程技術酸雨感測
外文關鍵詞: Triboelectric nanogenerators, Surface engineering, Acid rain-sensing
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

奈米摩擦發電機(triboelectric nanogenerators, TENG)由於能夠將環境中的機械能轉化為電能,應用於自供電穿戴式電子裝置相當有潛力。為此,本研究開發柔性TENG,並透過表面工程技術來調控摩擦層的功函數(work function, WF),進而提升TENG的輸出性能與穩定性。主要的策略包括:(1)利用陽離子聚L-賴氨酸(cationic poly-L-lysine, cPLL)作為聚二氧乙基噻吩:聚苯乙烯磺酸複合物(poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate), PEDOT:PSS)的修飾層;(2)利用1H, 1H, 2H, 2H-全氟癸基三氯硅烷(1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane, F17)高分子作為聚二甲基矽氧烷(polydimethylsiloxane, PDMS)的修飾層;(3)開發新穎共軛高分子聚二氨基萘(poly(diaminonaphthalene), PDAN)作為電極的修飾層。結合上述前兩個策略,成功實現柔性全高分子TENG,元件的開路電壓(open-circuit voltage, VOC)和短路電流(short-circuit current, ISC)分別達到688 V及33 μA,而最大功率密度(13.6 W/m2)與比功率(95.3 mW/g)甚至是目前TENG研究中的最高值。而元件在經歷二十萬次連續操作、144小時大氣長期穩定性測試和1200次撓曲釋放測試後,VOC皆保持初始值的90%以上,穩定性出色。此外,本研究首次成功實現高性能的新穎PDAN修飾層TENG元件,最大功率密度達5.2 W/m2。且在經歷二十萬次連續操作後,VOC幾乎沒有下降。更令人興奮的是,於水中浸泡360分鐘後,VOC及ISC仍保持初始值的90%以上,水阻抗性優異。最後,應用於自供電酸雨感測的技術,響應度達17.5%。本研究提出的修飾策略,為柔性TENG創造更多可能性,並開拓了TENG的應用。


Triboelectric nanogenerators (TENG) have the potential for use in self-powered wearable electronics. This study focuses on developing a flexible TENG and improving its output performance and stability through surface engineering technology. The strategies employed are as follows: (1) modifying poly(3, 4-ethylenedioxythiophene) (PEDOT:PSS) with cationic poly-L-lysine (cPLL); (2) modifying polydimethylsiloxane (PDMS) with 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (F17) polymer; (3) introducing a novel polymer, poly(diaminonaphthalene) (PDAN), as the electrode modification layer. By combining the first two strategies, the device exhibited an open-circuit voltage (VOC) of 688 V, a short-circuit current (ISC) of 33 μA. It exhibited a maximum power density of 13.6 W/m2 and a specific power of 95.3 mW g-1. These values are currently the highest reported in TENG research. The component demonstrated excellent stability, with the VOC remaining above 90% of the initial value after 200,000 continuous operations, a 144 hours atmospheric long-term stability test, and 1200 flexural release cycles. Furthermore, this study introduced a PDAN polymer TENG, with a maximum power density of 5.2 W/m2. Even after 200,000 continuous operations, the VOC barely decreased. Additionally, after soaking in water for 360 minutes, the VOC and ISC still maintained more than 90% of the initial value. The technology was successfully applied to self-powered acid rain-sensing, achieving a responsivity of 17.5%. The modification strategy proposed not only expands the possibilities for flexible TENG but also creates new applications for TENG.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.1.1 穿戴式電子裝置之柔性微型電源 3 1.2 研究目的 4 第二章 文獻回顧 7 2.1 TENG的介紹與發展 7 2.1.1 TENG的原理 9 2.1.2 TENG的理論方程式 11 2.1.3 TENG材料的選擇 12 2.2 表面工程技術 13 2.2.1 物理修飾 13 2.2.2 化學修飾 15 2.3 PDAN的介紹與發展 19 2.3.1 PDAN的聚合方式 20 2.3.2 化學氧化聚合PDAN 21 第三章 實驗步驟與分析 23 3.1 cPLL及F17高分子修飾之TENG的實驗設計 23 3.1.1 材料購買 24 3.1.2 PEDOT:PSS摩擦電極的製備與修飾 25 3.1.3 PDMS介電層的製備與修飾 25 3.2 PDAN修飾之TENG的實驗設計 26 3.2.1 材料購買 27 3.2.2 ITO玻璃基板的清洗 28 3.2.3 PDAN修飾層的製備 28 3.2.4 PDMS介電層的製備 29 3.3 TENG量測及實驗分析設備 29 第四章 結果與討論 31 4.1 低功函數之Al摩擦電極的缺陷 31 4.2 PEDOT:PSS摩擦電極層的修飾 32 4.2.1 PEDOT:PSS/PLL及PEDOT:PSS/cPLL之薄膜表面分析 33 4.2.2 PEDOT:PSS/cPLL修飾層的分析 34 4.2.3 PEDOT:PSS/PLL及PEDOT:PSS/cPLL之元件輸出性能 36 4.3 PDMS介電層的修飾 37 4.3.1 PDMS/F17 polymer之薄膜表面分析 38 4.3.2 F17 polymer修飾層的分析 40 4.3.3 PDMS/F17 polymer之元件輸出性能 41 4.4 半透明柔性全高分子TENG 42 4.4.1 PEDOT:PSS/cPLL + PDMS/F17 polymer之元件輸出性能 43 4.4.2 PEDOT:PSS/cPLL + PDMS/F17 polymer之元件穩定性 46 4.4.3 PEDOT:PSS/cPLL + PDMS/F17 polymer之元件透光率 50 4.5 PEDOT:PSS/cPLL + PDMS/F17 polymer之元件未來展望 51 4.6 新穎正摩擦材料PDAN高分子的聚合 53 4.7 摩擦電極層的PDAN修飾層──兩步法聚合 54 4.7.1 探討1:1-TSP-PDAN薄膜表面形貌及成膜性 54 4.7.2 探討1:2-TSP-PDAN薄膜表面形貌及成膜性 56 4.8 摩擦電極層的PDAN修飾層──一步法聚合 58 4.8.1 ACN鈍化之成效 59 4.8.2 OSP-PDAN之薄膜表面分析 62 4.8.3 OSP-PDAN修飾層的分析 64 4.9 新穎PDAN高分子修飾層TENG 69 4.9.1 ITO/OSP-PDAN + PDMS之元件輸出性能 70 4.9.2 ITO/2L-OSP-PDAN + PDMS之元件穩定性 71 4.9.3 2L-OSP-PDAN + PDMS之元件應用於酸雨感測的初步探討 73 4.10 2L-OSP-PDAN + PDMS之元件未來展望 75 結論 76 參考文獻 77

1. J. Luo and Z. L. Wang, EcoMat, 2020, 2, e12059.
2. C. Wu, A. C. Wang, W. Ding, H. Guo and Z. L. Wang, Advanced Energy Materials, 2019, 9, 1802906.
3. R. Xu, L. Zhu, Q. Zhang, Z. Wang, L. Shen, Y. Chen, H. Lei, X. Ge, J. Jiang, J. Liu, Y. Ma, X. Sun and Z. Wen, ACS Applied Materials & Interfaces, 2022, 14, 40014-40020.
4. P. Research, Wearable Technology Market (By Type: Wearable Smart Textiles, Wearable Products and Devices (Non-Textiles); By Product: Bodywear, Neckwear, Headwear, Wristwear, Footwear, Eyewear; By Application: Defense, Healthcare, Enterprise & Industrial Applications, Fitness & Wellness, Others) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2022-2030, Precedence Research, 2022.
5. B. W. An, J. H. Shin, S.-Y. Kim, J. Kim, S. Ji, J. Park, Y. Lee, J. Jang, Y.-G. Park, E. Cho, S. Jo and J.-U. Park, Journal, 2017, 9, 303.
6. D. G. Dassanayaka, T. M. Alves, N. D. Wanasekara, I. G. Dharmasena and J. Ventura, Advanced Functional Materials, 2022, 32, 2205438.
7. T. Cheng, Q. Gao and Z. L. Wang, Advanced Materials Technologies, 2019, 4, 1800588.
8. Y. Liu, T. H. Wong, X. Huang, C. K. Yiu, Y. Gao, L. Zhao, J. Zhou, W. Park, Z. Zhao, K. Yao, H. Li, H. Jia, J. Li, J. Li, Y. Huang, M. Wu, B. Zhang, D. Li, C. Zhang, Z. Wang and X. Yu, Nano Energy, 2022, 99, 107442.
9. S. Kim, M. K. Gupta, K. Y. Lee, A. Sohn, T. Y. Kim, K.-S. Shin, D. Kim, S. K. Kim, K. H. Lee, H.-J. Shin, D.-W. Kim and S.-W. Kim, Advanced Materials, 2014, 26, 3918-3925.
10. J.-G. Sun, T. N. Yang, I. S. Kuo, J.-M. Wu, C.-Y. Wang and L.-J. Chen, Nano Energy, 2017, 32, 180-186.
11. Y. Su, C. Ma, W. Chen, X. Xu and Q. Tang, ACS Applied Nano Materials, 2022, 5, 15369-15377.
12. Y. Kim, D. Lee, J. Seong, B. Bak, U. H. Choi and J. Kim, Nano Energy, 2021, 84, 105925.
13. J. Zhou, Y. Chen, X. Song, B. Zheng, P. Li, J. Liu, F. Qi, X. Hao and W. Zhang, Energy Technology, 2017, 5, 599-603.
14. Z. Liu, Z. Zhao, X. Zeng, X. Fu and Y. Hu, Journal of Physics D: Applied Physics, 2019, 52, 314002.
15. M. Matsunaga, J. Hirotani, S. Kishimoto and Y. Ohno, Nano Energy, 2020, 67, 104297.
16. X. Fan, Advanced Functional Materials, 2021, 31, 2009399.
17. Y. Ma and L. Zhi, Small Methods, 2019, 3, 1800199.
18. B.-Y. Lee, S.-U. Kim, S. Kang and S.-D. Lee, Nano Energy, 2018, 53, 152-159.
19. G. Huseynova, Y. Hyun Kim, J.-H. Lee and J. Lee, Journal of Information Display, 2020, 21, 71-91.
20. A. Chen, C. Zhang, G. Zhu and Z. L. Wang, Advanced Science, 2020, 7, 2000186.
21. L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee and S. Soh, Advanced Materials, 2018, 30, 1802405.
22. R. Zhang and H. Olin, EcoMat, 2020, 2, e12062.
23. N. Wang, Y. Liu, E. Ye, Z. Li and D. Wang, Materials Research Letters, 2022, 10, 97-123.
24. C. Rodrigues, D. Nunes, D. Clemente, N. Mathias, J. M. Correia, P. Rosa-Santos, F. Taveira-Pinto, T. Morais, A. Pereira and J. Ventura, Energy & Environmental Science, 2020, 13, 2657-2683.
25. L. Liu, W. Tang, C. Deng, B. Chen, K. Han, W. Zhong and Z. L. Wang, Nano Research, 2018, 11, 3972-3978.
26. C. Yan, Y. Gao, S. Zhao, S. Zhang, Y. Zhou, W. Deng, Z. Li, G. Jiang, L. Jin, G. Tian, T. Yang, X. Chu, D. Xiong, Z. Wang, Y. Li, W. Yang and J. Chen, Nano Energy, 2020, 67, 104235.
27. N. Cui, J. Liu, L. Gu, S. Bai, X. Chen and Y. Qin, ACS Applied Materials & Interfaces, 2015, 7, 18225-18230.
28. L. Xie, X. Chen, Z. Wen, Y. Yang, J. Shi, C. Chen, M. Peng, Y. Liu and X. Sun, Nano-Micro Letters, 2019, 11, 39.
29. J. Li, L. Kang, Y. Long, H. Wei, Y. Yu, Y. Wang, C. A. Ferreira, G. Yao, Z. Zhang, C. Carlos, L. German, X. Lan, W. Cai and X. Wang, ACS Applied Materials & Interfaces, 2018, 10, 42030-42038.
30. G. Yao, L. Kang, J. Li, Y. Long, H. Wei, C. A. Ferreira, J. J. Jeffery, Y. Lin, W. Cai and X. Wang, Nature Communications, 2018, 9, 5349.
31. Y. Zeng, H. Xiang, N. Zheng, X. Cao, N. Wang and Z. L. Wang, Nano Energy, 2022, 91, 106601.
32. H. Zhang, P. Zhang and W. Zhang, Nano Energy, 2021, 84, 105933.
33. K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng, K. Dai, L. Mi, C. Pan, C. Liu and C. Shen, Nano Energy, 2020, 70, 104546.
34. H. Li, X. Fang, R. Li, B. Liu, H. Tang, X. Ding, Y. Xie, R. Zhou, G. Zhou and Y. Tang, Nano Energy, 2020, 78, 105288.
35. S. Shen, X. Xiao, X. Xiao and J. Chen, Chemical Communications, 2021, 57, 5871-5879.
36. L. M. Zhang, C. B. Han, T. Jiang, T. Zhou, X. H. Li, C. Zhang and Z. L. Wang, Nano Energy, 2016, 22, 87-94.
37. T. Jiang, H. Pang, J. An, P. Lu, Y. Feng, X. Liang, W. Zhong and Z. L. Wang, Advanced Energy Materials, 2020, 10, 2000064.
38. X. Wang, S. Niu, Y. Yin, F. Yi, Z. You and Z. L. Wang, Advanced Energy Materials, 2015, 5, 1501467.
39. L. Zhou, D. Liu, J. Wang and Z. L. Wang, Friction, 2020, 8, 481-506.
40. S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu and Z. L. Wang, Energy & Environmental Science, 2013, 6, 3576-3583.
41. S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin, Y. Bando and Z. L. Wang, Nano Energy, 2014, 8, 150-156.
42. X. Cui and Y. Zhang, Nano Select, 2020, 1, 461-470.
43. S. Matsusaka, H. Maruyama, T. Matsuyama and M. Ghadiri, Chemical Engineering Science, 2010, 65, 5781-5807.
44. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A. C. Wang, C. Xu and Z. L. Wang, Nature Communications, 2019, 10, 1427.
45. M. Ibrahim, J. Jiang, Z. Wen and X. Sun, Journal, 2021, 1, 58-80.
46. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang, Nano Letters, 2012, 12, 3109-3114.
47. J. Huang, X. Fu, G. Liu, S. Xu, X. Li, C. Zhang and L. Jiang, Nano Energy, 2019, 62, 638-644.
48. G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou and Z. L. Wang, Nano Letters, 2013, 13, 847-853.
49. H. Chen, L. Bai, T. Li, C. Zhao, J. Zhang, N. Zhang, G. Song, Q. Gan and Y. Xu, Nano Energy, 2018, 46, 73-80.
50. Y. Zou, J. Xu, K. Chen and J. Chen, Advanced Materials Technologies, 2021, 6, 2000916.
51. Y. Yu and X. Wang, Extreme Mechanics Letters, 2016, 9, 514-530.
52. S. A. Lone, K. C. Lim, K. Kaswan, S. Chatterjee, K.-P. Fan, D. Choi, S. Lee, H. Zhang, J. Cheng and Z.-H. Lin, Nano Energy, 2022, 99, 107318.
53. S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. S. Zhou and Z. L. Wang, Advanced Materials, 2014, 26, 6720-6728.
54. Y. Yu, Z. Li, Y. Wang, S. Gong and X. Wang, Advanced Materials, 2015, 27, 4938-4944.
55. S.-H. Shin, Y. H. Kwon, Y.-H. Kim, J.-Y. Jung, M. H. Lee and J. Nah, ACS Nano, 2015, 9, 4621-4627.
56. S.-H. Shin, Y. E. Bae, H. K. Moon, J. Kim, S.-H. Choi, Y. Kim, H. J. Yoon, M. H. Lee and J. Nah, ACS Nano, 2017, 11, 6131-6138.
57. R. Bhatt, A. Mishra and A. K. Bajpai, Results in Materials, 2021, 9, 100174.
58. X.-G. Li, M.-R. Huang and S.-X. Li, Acta Materialia, 2004, 52, 5363-5374.
59. F. E. Salih, A. Ouarzane and M. El Rhazi, Arabian Journal of Chemistry, 2017, 10, 596-603.
60. T. D. Nguyen, T. T. H. Dang, H. Thai, L. H. Nguyen, D. L. Tran, B. Piro and M. C. Pham, Electroanalysis, 2016, 28, 1907-1913.
61. K. M. Hassan, G. M. Elhaddad and M. AbdelAzzem, Microchimica Acta, 2019, 186, 440.
62. M. Tagowska, B. Pałys, M. Mazur, M. Skompska and K. Jackowska, Electrochimica acta, 2005, 50, 2363-2370.
63. X.-G. Li, M.-R. Huang, Y.-B. Jiang, J. Yu and Z. He, Microchimica Acta, 2019, 186, 208.
64. X.-G. Li, J.-L. Zhang and M.-R. Huang, Chemistry – A European Journal, 2012, 18, 9877-9885.
65. S. Fındık, M. Gülfen and A. O. Aydın, Separation Science and Technology, 2014, 49, 2890-2896.
66. D. Zhu, Y. Wang, L. Gan, M. Liu, K. Cheng, Y. Zhao, X. Deng and D. Sun, Electrochimica Acta, 2015, 158, 166-174.
67. O. Salhi, T. Ez-zine, L. Oularbi and M. El Rhazi, Arabian Journal of Chemistry, 2022, 15, 103820.
68. A. M. Abdel-Aziz, H. H. Hassan, A. A. Hassan and I. H. A. Badr, Journal of The Electrochemical Society, 2019, 166, B1441.
69. M. T. T. Nguyen, H. L. Nguyen and D. T. Nguyen, Advances in Polymer Technology, 2021, 2021, 6637316.
70. B. J. Pałys, M. Skompska and K. Jackowska, Journal of Electroanalytical Chemistry, 1997, 433, 41-48.
71. R. Salcedo, M. Salmón, M. Aguilar, T. Hernández-Perez and M. Saloma, Polymer, 2001, 42, 8737-8742.
72. Y.-Y. Chen, T. S. T. Balamurugan, C.-Y. Chang, C.-Y. Hsu, C.-Y. Fang, Y.-S. Liu and L.-F. Ho, Journal of Materials Chemistry A, 2023, 11, 10174-10183.
73. Y. Li, G. Ren, Z. Zhang, C. Teng, Y. Wu, X. Lu, Y. Zhu and L. Jiang, Journal of Materials Chemistry A, 2016, 4, 17324-17332.
74. D. Alemu, H.-Y. Wei, K.-C. Ho and C.-W. Chu, Energy & Environmental Science, 2012, 5, 9662-9671.
75. C. He, J. Cheng, Y. Liu, X. Zhang and B. Wang, Energy Mater, 2021, 1, 100010.
76. S. Choi, S. Cho, Y. Yun, S. Jang, J. H. Choi, Y. Ra, M. La, S. J. Park and D. Choi, Advanced Materials Technologies, 2020, 5, 2000003.
77. D. M. Hoffman, International Journal of Polymer Analysis and Characterization, 2017, 22, 545-556.
78. J. Albaugh, C. O'Sullivan and L. O'Neill, Surface and Coatings Technology, 2008, 203, 844-847.
79. J. Wang, Z. Wen, Y. Zi, P. Zhou, J. Lin, H. Guo, Y. Xu and Z. L. Wang, Advanced Functional Materials, 2016, 26, 1070-1076.
80. B. Dudem, A. R. Mule, H. R. Patnam and J. S. Yu, Nano Energy, 2019, 55, 305-315.
81. A. R. Mule, B. Dudem, H. Patnam, S. A. Graham and J. S. Yu, ACS Sustainable Chemistry & Engineering, 2019, 7, 16450-16458.
82. H. Sun, Y. Zhao, C. Wang, K. Zhou, C. Yan, G. Zheng, J. Huang, K. Dai, C. Liu and C. Shen, Nano Energy, 2020, 76, 105035.
83. N. Y. Win Zaw, J. Yun, T. S. Goh, I. Kim, Y. Kim, J. S. Lee and D. Kim, Energy, 2022, 247, 123422.
84. Y. Yun, S. Jang, S. Cho, S. H. Lee, H. J. Hwang and D. Choi, Nano Energy, 2021, 80, 105525.
85. C. Liu, J. Li, L. Che, S. Chen, Z. Wang and X. Zhou, Nano Energy, 2017, 41, 359-366.
86. H. Park, S.-J. Oh, D. Kim, M. Kim, C. Lee, H. Joo, I. Woo, J. W. Bae and J.-H. Lee, Advanced Science, 2022, 9, 2201070.
87. X. He, X. Mu, Q. Wen, Z. Wen, J. Yang, C. Hu and H. Shi, Nano Research, 2016, 9, 3714-3724.
88. Z. Zheng, D. Yu, B. Wang and Y. Guo, Chemical Engineering Journal, 2022, 446, 137393.
89. X. Liang, T. Zhao, W. Jiang, X. Yu, Y. Hu, P. Zhu, H. Zheng, R. Sun and C.-P. Wong, Nano Energy, 2019, 59, 508-516.
90. B. Kim, J. Y. Song, D. Y. Kim, M.-c. Kim, Z.-H. Lin, D. Choi and S. M. Park, Nano Energy, 2022, 104, 107878.
91. Y. Wang and M. Lieberman, Langmuir, 2003, 19, 1159-1167.
92. N. Ahmed, H. Fan, P. Dubois, X. Zhang, S. Fahad, T. Aziz and J. Wan, Journal of Materials Chemistry A, 2019, 7, 21577-21604.
93. T. J. Mooibroek, S. J. Teat, C. Massera, P. Gamez and J. Reedijk, Crystal Growth & Design, 2006, 6, 1569-1574.
94. K. Aidas and V. Balevicius, Journal of Molecular Liquids, 2006, 127, 134-138.
95. L. Vogt, E. Schulte, S. Collins and P. Quaino, Topics in Catalysis, 2019, 62, 1076-1085.
96. M.-C. Pham, M. Oulahyne, M. Mostefai and M. M. Chehimi, Synthetic Metals, 1998, 93, 89-96.
97. H. Y. Abbasi, Z. Tehrani, A. Devadoss, M. M. Ali, S. Moradi-Bachiller, D. Albani and O. J. Guy, Nanoscale Advances, 2021, 3, 2295-2304.
98. J.-E. Zhang, Y. Ouyang and D.-J. Ling, Chemosphere, 2007, 67, 2131-2137.
99. S. Eyssautier-Chuine, B. Marin, C. Thomachot-Schneider, G. Fronteau, A. Schneider, S. Gibeaux and P. Vazquez, Environmental Earth Sciences, 2016, 75, 748.

無法下載圖示 全文公開日期 2033/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE