簡易檢索 / 詳目顯示

研究生: 蔡承祐
Cheng-You Tsai
論文名稱: 靜電自組裝兩性離子修飾奈米摩擦發電機及其於自供電汗水感測技術之應用
Surface Modification of Triboelectric Nanogenerator via Electrostatically Self-Assembled Layer and Its Application in Sweat Sensor
指導教授: 張志宇
Chih-Yu Chang
口試委員: 楊家銘
Chia-Ming Yang
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 89
中文關鍵詞: 兩性離子靜電自組裝奈米摩擦發電機汗水感測器
外文關鍵詞: Zwitterion, Electrostatic self-assembly, Triboelectric nanogenerators, Sweat sensor
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米摩擦發電機(triboelectric nanogenerator, TENG)可以將機械能轉換成電能,是目前新興的自供電技術。透過表面修飾技術使TENG的輸出性能提升,是目前最主流的方式之一。本研究開發出藉由靜電自組裝兩性離子trimethylglycine (M1)以及3-(ethyldimethyl-ammonio)propane-1-sulfonate (M2)做為聚二甲基矽氧烷(polydimethylsiloxane, PDMS)的界面修飾層,製作高性能且穩定的TENG。首先藉由鹼處理將PDMS表面改質成具有負電荷的表面(PDMS-O‐-H+),接著透過慢乾製程使兩性離子的正電基團與PDMS的負電荷形成靜電吸引力,並透過PAN鈍化PDMS-O‐-H+,讓PDMS-O‐-H+的穩定性提升,使兩性離子在表面達到最理想的排列。藉由這個策略,我們將結果延伸應用在大面積TENG,元件的開路電壓(open-circuit voltage, Voc)、短路電流(short-circuit current, Isc)分別達到728 V以及106.8 µA,其最高功率密度可達6.65 W/m2,且可同時點亮209顆LED燈。除此之外,我們的元件在連續二十萬次循環操作下,其輸出性能仍保持初始值的92.4%,顯示其出色的穩定性。此外,我們也將元件製作成可撓式元件,應用在穿戴式電子裝置來監測人體的移動,並做為自供電裝置來驅動濕度感測器。更重要的是,兩性離子不僅可以提升元件的電性輸出,還可以利用其中的正、負電基團分別捕捉陰離子以及陽離子的特性,應用於汗水感測,製備出自供電汗水感測器。這個成果顯示了表面改質技術的重要性,不但可以提升元件性能,甚至可以賦予元件汗水感測功能。本研究將加速TENG自供電裝置以及汗水感測技術的發展與進步。


    Nowadays, triboelectric nanogenerator (TENG) that convert mechanical energy into electronic energy is a new self-powered technique. In order to improve the output performances of the TENG, the most common way is surface engineering. In this study, a strategy is demonstrated to develop high-performance and stable TENG by using electrostatic self-assembled zwitterions, trimethylglycine (M1) and 3-(ethyldimethyl-ammonio)-propane-1-sulfonate (M2), as surface modification layer.
    First, the negative charge on polydimethylsiloxane (PDMS) surface created by base treatment, then through slow-dried procedure induces the electrostatic interaction between the positive charge from zwitterions and negative charge from PDMS. Additionally, the stability of PDMS-O‐-H+ was improved by incorporating the passivation layer of PAN, facilitating the most ideal molecular arrangement. By using this strategy, the output performances of the large-area TENG exhibits the open-circuit voltage (Voc) of 728 V, short-circuit current (Isc) of 106.8 µA, and the maximum power density of 6.65 W/m2, 209 light-emitting diodes (LEDs) lit up simultaneously. Moreover, the resulting TENG possesses excellent operating stability, maintaining the 92.4% of initial Voc after 200,000 operating cycles. Furthermore, we also manufacture the flexible TENG, and applying to human motion sensor and self-powered device. More importantly, the resulting TENG could even apply to self-powered sweat sensor by utilizing the negative- and positive-charged functional group on zwitterion that can capture positive and negative ions in sweat, respectively. This result demonstrates the importance of the surface engineering, that not only enhance the output performance, but also give the function of the sweat sensor. This study will accelerate the development of self-powered electronic device of TENG and sweat sensing technology.

    誌謝 摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究目的 第二章 文獻回顧 2.1 TENG介紹 2.1.1 TENG工作原理 2.1.2 TENG公式 2.1.3 TENG摩擦層材料的選擇 2.2 表面工程 2.2.1 物理修飾 2.2.2 化學修飾 2.3 靜電自組裝兩性離子 第三章 實驗步驟與分析 3.1 實驗設計 3.2 元件製備 3.2.1 材料購買 3.2.2 基板清洗流程 3.2.3 PDMS薄膜製備流程及鹼處理 3.2.4靜電自組裝界面修飾層製備流程 3.2.5 PDMS-O‐-H+鈍化製程 3.2.6 元件感測製程 3.3 TENG量測及實驗分析設備 第四章 實驗結果與討論 4.1 使用PDMS-O‐-H+做為TENG摩擦層之成效 4.1.1 PDMS-O‐-H+薄膜表面分析 4.1.2 PDMS-O薄膜之元件特性 4.2 使用靜電自組裝兩性離子做為PDMS-O‐-H+之界面修飾層應用於TENG之成效 4.2.1 PDMS-O‐-H+/M1、PDMS-O‐-H+/M2薄膜表面分析 4.2.2 PDMS-O‐-H+/M1、PDMS-O‐-H+/M2薄膜之元件特性 4.3 探討PDMS-O‐-H+不穩定之原因及解決方法 4.3.1 發現PDMS-O‐-H+之不穩定 4.3.2 驗證水氣對PDMS-O‐-H+造成的影響 4.3.3改善PDMS-O‐-H+之不穩定的方法 4.4 使用靜電自組裝兩性離子做為PDMS-O‐-H+/PAN之界面修飾層應用於TENG之成效 4.4.1 PDMS-O‐-H+/PAN/M1、PDMS-O‐-H+/PAN/M2之表面分析 4.4.2 PDMS-O‐-H+/PAN/M1、PDMS-O‐-H+/PAN/M2之元件特性 4.5 將PDMS-O‐-H+/PAN/M2做為TENG摩擦層之後續應用 4.5.1 大面積元件之應用 4.5.2 大面積軟板元件之應用 4.5.3 大面積軟板元件做為人體移動監測元件之應用 4.5.4 大面積軟板元件做為自供電元件之應用 4.6 PDMS-O‐-H+/PAN/M2做為TENG摩擦層應用於汗水感測之初步探討 第五章 結論 參考資料

    1. W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin and X. Yang, IEEE Access, 2018, 6, 6900-6919.
    2. J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, Future Gener Comput Syst, 2013, 29, 1645-1660.
    3. S. B. Baker, W. Xiang and I. Atkinson, IEEE Access, 2017, 5, 26521-26544.
    4. B. L. Risteska Stojkoska and K. V. Trivodaliev, J. Clean. Prod., 2017, 140, 1454-1464.
    5. S. Fang, L. D. Xu, Y. Zhu, J. Ahati, H. Pei, J. Yan and Z. Liu, IEEE Trans. Industr. Inform., 2014, 10, 1596-1605.
    6. M. Capra, R. Peloso, G. Masera, M. Ruo Roch and M. Martina, Future Internet, 2019, 11.
    7. T. Wu, J. Redouté and M. R. Yuce, IEEE Access, 2018, 6, 35801-35808.
    8. A. Ahmed, I. Hassan, P. Song, M. Gamaleldin, A. Radhi, N. Panwar, S. C. Tjin, A. Y. Desoky, D. Sinton, K.-T. Yong and J. Zu, Sci. Rep., 2017, 7, 17143.
    9. A. Ahmed, I. Hassan, M. F. El-Kady, A. Radhi, C. K. Jeong, P. R. Selvaganapathy, J. Zu, S. Ren, Q. Wang and R. B. Kaner, Adv. Sci., 2019, 6, 1802230.
    10. F.-R. Fan, Z.-Q. Tian and Z. Lin Wang, Nano Energy, 2012, 1, 328-334.
    11. M. Han, X. Zhang, W. Liu, X. Sun, X. Peng and H. Zhang, Sci. China Technol. Sci., 2013, 56, 1835-1841.
    12. Y. Fang, T. Tang, Y. Li, C. Hou, F. Wen, Z. Yang, T. Chen, L. Sun, H. Liu and C. Lee, iScience, 2021, 24, 102300.
    13. Z. Lin, J. Chen, X. Li, Z. Zhou, K. Meng, W. Wei, J. Yang and Z. L. Wang, ACS Nano, 2017, 11, 8830-8837.
    14. L. Liu, Q. Shi, J. S. Ho and C. Lee, Nano Energy, 2019, 66, 104167.
    15. Y. Zou, J. Xu, K. Chen and J. Chen, Adv. Mater. Technol., 2021, 6, 2000916.
    16. C.-C. Wang and C.-Y. Chang, J. Mater. Chem. C, 2020, 8, 4542-4548.
    17. J.-R. Yang, C.-J. Lee and C.-Y. Chang, J. Mater. Chem. A, 2021, 9, 4230-4239.
    18. F. A. Furfari, IEEE Ind. Appl. Mag., 2005, 11, 10-14.
    19. Y. J. Kim, J. Lee, S. Park, C. Park, C. Park and H.-J. Choi, RSC Adv., 2017, 7, 49368-49373.
    20. Q. Shi, T. He and C. Lee, Nano Energy, 2019, 57, 851-871.
    21. Z. L. Wang, T. Jiang and L. Xu, Nano Energy, 2017, 39, 9-23.
    22. S. Chen, C. Gao, W. Tang, H. Zhu, Y. Han, Q. Jiang, T. Li, X. Cao and Z. Wang, Nano Energy, 2015, 14, 217-225.
    23. Y. Bai, C. B. Han, C. He, G. Q. Gu, J. H. Nie, J. J. Shao, T. X. Xiao, C. R. Deng and Z. L. Wang, Adv. Funct. Mater., 2018, 28, 1706680.
    24. U. Khan, R. Hinchet, H. Ryu and S.-W. Kim, APL Mater., 2017, 5, 073803.
    25. X. Yin, D. Liu, L. Zhou, X. Li, C. Zhang, P. Cheng, H. Guo, W. Song, J. Wang and Z. L. Wang, ACS Nano, 2019, 13, 698-705.
    26. B. Yang, W. Zeng, Z.-H. Peng, S.-R. Liu, K. Chen and X.-M. Tao, Adv. Energy Mater., 2016, 6, 1600505.
    27. A. C. Antony, D. Thelen, N. Zhelev, K. Adib and R. G. Manley, J. Appl. Phys., 2021, 129, 065304.
    28. L. Zhao, Q. Zheng, H. Ouyang, H. Li, L. Yan, B. Shi and Z. Li, Nano Energy, 2016, 28, 172-178.
    29. F.-R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang, Nano Lett., 2012, 12, 3109-3114.
    30. W. Song, B. Gan, T. Jiang, Y. Zhang, A. Yu, H. Yuan, N. Chen, C. Sun and Z. L. Wang, ACS Nano, 2016, 10, 8097-8103.
    31. D. Tantraviwat, P. Buarin, S. Suntalelat, W. Sripumkhai, P. Pattamang, G. Rujijanagul and B. Inceesungvorn, Nano Energy, 2020, 67, 104214.
    32. M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur and Y.-K. Choi, Small, 2014, 10, 3887-3894.
    33. W. Seung, M. K. Gupta, K. Y. Lee, K. S. Shin, J. H. Lee, T. Y. Kim, S. Kim, J. Lin, J. H. Kim and S. W. Kim, ACS Nano, 2015, 9, 3501-3509.
    34. C. K. Jeong, K. M. Baek, S. Niu, T. W. Nam, Y. H. Hur, D. Y. Park, G.-T. Hwang, M. Byun, Z. L. Wang, Y. S. Jung and K. J. Lee, Nano Lett., 2014, 14, 7031-7038.
    35. S. Cho, S. Jang, M. La, Y. Yun, T. Yu, S. J. Park and D. Choi, Materials, 2020, 13.
    36. G.-G. Cheng, S.-Y. Jiang, K. Li, Z.-Q. Zhang, Y. Wang, N.-Y. Yuan, J.-N. Ding and W. Zhang, Appl. Surf. Sci., 2017, 412, 350-356.
    37. S.-H. Shin, Y. H. Kwon, Y.-H. Kim, J.-Y. Jung, M. H. Lee and J. Nah, ACS Nano, 2015, 9, 4621-4627.
    38. Y. Feng, Y. Zheng, S. Ma, D. Wang, F. Zhou and W. Liu, Nano Energy, 2016, 19, 48-57.
    39. Y. Liu, Q. Fu, J. Mo, Y. Lu, C. Cai, B. Luo and S. Nie, Nano Energy, 2021, 89, 106369.
    40. S. Wang, Y. Zi, Y. S. Zhou, S. Li, F. Fan, L. Lin and Z. L. Wang, J. Mater. Chem. A, 2016, 4, 3728-3734.
    41. S.-H. Shin, Y. E. Bae, H. K. Moon, J. Kim, S.-H. Choi, Y. Kim, H. J. Yoon, M. H. Lee and J. Nah, ACS Nano, 2017, 11, 6131-6138.
    42. H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu and Z. L. Wang, Adv. Funct. Mater., 2015, 25, 5691-5697.
    43. Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen and J. Huang, Joule, 2017, 1, 371-382.
    44. W.-F. Chan, H.-y. Chen, A. Surapathi, M. G. Taylor, X. Shao, E. Marand and J. K. Johnson, ACS Nano, 2013, 7, 5308-5319.
    45. B. K. Yun, J. W. Kim, H. S. Kim, K. W. Jung, Y. Yi, M.-S. Jeong, J.-H. Ko and J. H. Jung, Nano Energy, 2015, 15, 523-529.
    46. L. M. Johnson, L. Gao, C. W. Shields Iv, M. Smith, K. Efimenko, K. Cushing, J. Genzer and G. P. López, J. Nanobiotechnology, 2013, 11, 22.
    47. R. L. Williams, D. J. Wilson and N. P. Rhodes, Biomaterials, 2004, 25, 4659-4673.
    48. K. Malecha, I. Gancarz and W. Tylus, J. Micromech. Microeng., 2010, 20, 115006.
    49. R. Raveendran and M. A. G. Namboothiry, ACS Omega, 2018, 3, 11278-11285.
    50. L. Wang, G. Li, Y. Lin, Z. Zhang, Z. Chen and S. Wu, Polym. Chem., 2016, 7, 4964-4974.
    51. M. Antunes, M. T. Donato, V. Paz, F. Caetano, L. Santos, R. Colaço, L. C. Branco and B. Saramago, Tribol. Lett., 2020, 68, 70.
    52. J. Huang, A. Riisager, P. Wasserscheid and R. Fehrmann, Chem. Commun., 2006, DOI: 10.1039/B609714F, 4027-4029.
    53. W. Zhang, B. Wu, S. Sun and P. Wu, Nat. Commun., 2021, 12, 4082.
    54. P. Karimineghlani, A. Palanisamy and S. A. Sukhishvili, ACS Appl. Mater. Interfaces, 2018, 10, 14786-14795.
    55. Y. Fan, N. Migliore, P. Raffa, R. K. Bose and F. Picchioni, Polymers, 2019, 11.
    56. S. Mushtaq, N. M. Ahmad, H. Nasir, A. Mahmood and H. A. Janjua, Adv. Polym. Technol., 2020, 2020, 5392074.
    57. Y. Zhu, H. Lin, W. Fang, A. Wang, J. Sun, S. Yuan, J. Li and J. Jin, iScience, 2021, 24, 102964.
    58. D. Maji, S. K. Lahiri and S. Das, Surf. Interface Anal., 2012, 44, 62-69.
    59. K. Aidas and V. Balevicius, J. Mol. Liq., 2006, 127, 134-138.
    60. Y.-Z. Zheng, Y. Zhou, G. Deng, R. Guo and D.-F. Chen, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117641.
    61. Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama and A. Yamada, J. Am. Chem. Soc., 2014, 136, 5039-5046.
    62. A. J. Fernández Romero, J. J. López Cascales and T. F. Otero, J. Phys. Chem. B, 2005, 109, 21078-21085.
    63. P. P. Kannan, N. K. Karthick, A. Mahendraprabu, R. Shanmugam, A. Elangovan and G. Arivazhagan, J. Mol. Struct., 2017, 1139, 196-201.
    64. Z. Fu, B. Liu, L. Sun and H. Zhang, Polym. Degrad. Stab., 2017, 140, 104-113.
    65. R. M. Silverstein and G. C. J. J. o. C. E. Bassler, 1962, 39, 546.
    66. C. Park, G. Song, S. M. Cho, J. Chung, Y. Lee, E. H. Kim, M. Kim, S. Lee, J. Huh and C. Park, Adv. Funct. Mater., 2017, 27, 1701367.
    67. N. Ul Afsar, X. Ge, Z. Zhao, A. Hussain, Y. He, L. Ge and T. Xu, Sep. Purif. Technol., 2021, 254, 117619.
    68. W. Hong, X. Hu, B. Zhao, F. Zhang and D. Zhang, Adv. Mater., 2010, 22, 5043-5047.

    無法下載圖示 全文公開日期 2027/08/25 (校內網路)
    全文公開日期 2027/08/25 (校外網路)
    全文公開日期 2027/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE