簡易檢索 / 詳目顯示

研究生: BADRIL AZHAR
BADRIL AZHAR
論文名稱: 用於固態聚合物電解質和固態鋰電池應用的新穎聚合物
Novel Polymers for Solid-State Polymer Electrolytes and Solid-State Lithium Battery Applications
指導教授: 陳崇賢
Chorng-Shyan Chern
Pham Quoc Thai
Pham Quoc Thai
口試委員: 江佳穎
Chia-Ying Chiang
范國泰
Quoc-Thai Pham
吳宜萱
Yi-Shiuan Wu
許榮木
Jung-Mu Hsu
陳崇賢
Chorng-Shyan Chern
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 156
外文關鍵詞: solid polymer electrolytes, β-cyanoethyl ether, solid-state lithium batteries, lithium propanesulfonate ether, ionic conductivity, zwitterionic polymer
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態鋰電池(SSLB)可作為克服傳統液態電解質型鋰離子電池局限性的解決方案,例如增強安全性、提高能量密度和更廣泛應用可能性的優勢。然而,廣泛採用SSLB面臨須開發具有卓越離子導電性和鋰離子傳輸數的固態聚合物電解質(SPE)相關的重大挑戰。本論文匯總兩個部分的研究結果,對高性能SSLB的關鍵挑戰提供了創新策略。 第一部分研究藉由引入β-氰基醚基和丙烷磺酸醚基改質聚乙烯醇(PVA),提高SPE的離子導電性並實現固態鋰電池優良的充放電循環性能。當這種新型接枝聚合物與50 wt%的三氟甲磺醯亞胺鋰(LiTFSI)相結合時,離子導電率為5.4×10-4 S cm-1和31.6 kJ mol-1的低活化能。值得注意的是,電化學穩定視窗達到5.3 V(相對於Li/Li+),在室溫(約25 °C)下鋰離子遷移常數為0.48。Li|SPE|Li電池在500次循環中沒有短路,並且固態Li|SPE|LiFePO4電池表現出卓越的循環穩定性,在0.5 C速率下576個循環後克電容量138 mAh g−1,電容量維持率為70%。
    至於第二部分則著重於合成聚(乙二醇)甲醚丙烯酸酯(PEGMEA)功能化的磺基甲基丙烯酸酯(SBMA)藉以改善其電化學和機械性能。PEGMEA單元作為降低玻璃化轉變溫度的軟鏈段,而SBMA單元則作為增加Li+遷移性的單元。藉由將共聚物與50 wt%的LiTFSI混合製備SPE,表現出最大離子導電率為19.3×10–5 S cm–1,鋰離子遷移常數為0.31,並在室溫下具有5.23 V的氧化電位穩定性。選定的SPE被引入到SSLB中,在0.1 C速率下的比電容量為169 mAh g–1和在0.5 C速率下的比電容量為146 mAh g–1,經過450個循環後仍然能獲得電容量維持率在70%。值得注意的是,共聚物的SPE更優於採用單一聚合的SPE的電池表現,此結果顯示藉由這種創新共聚物設計實現的卓越電化學性能。
    這篇論文全面概述了固態鋰離子電池的最新進展。探討了新型SPE材料的合成、物理化學性質和電化學性能,為它們在未來可持續鋰離子電池和綠能能源技術中的潛力提供了光明的前景。本論文不僅有助於對這些先進材料的理解,還強調了它們在SSLB的持續演進中的關鍵作用,為更安全、更高效和環保的能源儲存解決方案提供了一個方向。


    Solid-state lithium batteries (SSLBs) have emerged as a promising solution to overcome the limitations of conventional liquid electrolyte-based lithium-ion batteries, providing enhanced safety, increased energy density, and broader application possibilities. However, the widespread adoption of SSLBs faces significant challenges related to the development of solid polymer electrolytes (SPEs) with superior ionic conductivities and lithium transference numbers. This thesis consolidates the findings of the pursuit of high-performance SSLBs. The first part investigates the modification of polyvinyl alcohol (PVA) through the incorporation of β-cyanoethyl ether and propanesulfonate ether groups, in a concerted effort to enhance the ionic conductivity of SPEs and achieve satisfactory cycling performance for solid-state lithium batteries. When this novel graft-polymer was combined with 50 wt% of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), it was demonstrated a remarkable ionic conductivity of 5.4×10-4 S cm-1, accompanied by a low activation energy of 31.6 kJ mol-1. Notably, the electrochemical stability window reaches 5.3 V (vs. Li/Li+), and the lithium transference number of 0.48 at room temperature (approximately 25 °C). The Li|SPE|Li cell undergoes 500 cycles without short-circuiting, and a solid-state Li|SPE|LiFePO4 battery demonstrates exceptional cycling stability, achieving a discharge capacity of 138 mA h g−1 at 0.5 C-rate and capacity retention of 70% after 576 cycles.
    The second part focuses on the synthesis of poly(ethylene glycol) methyl ether acrylate (PEGMEA) functionalized with sulfobetaine methacrylate (SBMA) pendants to enhance electrochemical and mechanical properties. The PEGMEA unit, serving as a soft segment to decreasing the glass transition temperature, while the SBMA unit functions as a zwitterionic unit to increasing Li+ mobility. SPEs were prepared by mixing copolymers with 50 wt% of LiTFSI and it exhibits a maximum ionic conductivity of 19.3×10–5 S cm–1, a lithium transference number of 0.31, and an oxidation stability of 5.23 V at ambient temperature. The selected SPE is incorporated into a SSLB, yielding a discharge capacity of 169 mA h g–1 at 0.1 C-rate and 146 mA h g–1 at 0.5 C-rate, maintaining a capacity retention of 70% after 450 cycles. Notably, the copolymer-based SPEs outperform a reference battery with a homopolymer-based SPE, emphasizing the superior electrochemical properties achieved through this innovative copolymer design.
    This thesis provides a comprehensive overview of recent advancements in solid-state polymer electrolytes for SSLBs. It explores the synthesis, characterization, and electrochemical performance of these novel SPE materials, shedding light on their potential for revolutionizing the future of sustainable lithium batteries and clean energy technologies. The thesis not only contributes to the understanding of these advanced materials but also underscores their critical role in the continued evolution of SSLBs, offering a path towards safer, more efficient, and environmentally friendly energy storage solutions.

    摘要 ii Abstract iv Acknowledgement vi Table of Content vii List of Tables x List of Figures xii List of Schemes xvi List of Abbreviations and Symbols Used xvii CHAPTER 1 Introduction 1 1.1. Background 1 1.2. Goal and objectives 9 CHAPTER 2 Literature Review 10 2.1. Energy storage 10 2.1.1. Electrochemical and battery energy storage 11 2.2. Lithium-ion battery 12 2.2.1. Working principle 15 2.2.2. Electrolytes 17 2.3. Solid polymer electrolytes 19 2.3.1. Type of polymer host commonly used in the SPEs 20 2.3.2. Desirable properties of SPEs 26 2.3.3. Ion transport mechanism of SPE 28 2.3.4. Strategies for enhancing the Li+ transference number of SPE 30 2.3.5. Strategies for enhancing the mechanical property of SPE 33 CHAPTER 3 Materials and Experimental Methods 37 3.1. Materials 37 3.2. Equipment and instruments 39 3.3. Experimental procedures 40 3.4. Characterization procedures 40 3.4.1. Fourier-transform infrared spectroscopy (FTIR) 40 3.4.2. Nuclear magnetic resonance (NMR) 41 3.4.3. Differential scanning calorimetry (DSC) 42 3.4.4. Thermogravimetric analysis (TGA) 42 3.4.5. X-ray diffraction (XRD) 43 3.4.6. Gel permeation chromatography (GPC) 43 3.4.7. Scanning electron microscope (SEM) 44 3.4.8. Mechanical strength 44 3.5. Electrochemical properties procedure 45 3.6. Battery testing procedure 46 CHAPTER 4 Polymer with Cyanoethyl Ether and Propanesulfonate Ether Side Chains for Solid-State Li-ion Battery Application 47 4.1. Abstract 47 4.2. Introduction 48 4.3. Experimental 52 4.3.1. Preparation and Characterization of PVA-CN-SO3 Polymer 52 4.3.2. Electrochemical Characterizations of SPEs 54 4.3.3. Preparation of Solid-State Lithium Batteries (SSLBs) 56 4.4. Results and Discussion 57 4.4.1. Characterizations of PVA-CN-SO3 polymers 57 4.4.2. Characterizations of SPEs 61 4.4.3. Electrochemical Properties of SPEs 66 4.4.4. Solid-State Lithium Battery Performance 73 4.4.5. Post-mortem analysis for SPE 81 4.5. Conclusion 84 CHAPTER 5 Copolymers comprising poly(ethylene glycol) acrylate soft unit and sulfobetaine methacrylate zwitterionic unit and its application in solid-state lithium battery at ambient temperature 85 5.1. Abstract 85 5.2. Introduction 86 5.3. Experimental 87 5.3.1. Materials 87 5.3.2. Preparation and Characterizations of Copolymers 88 5.3.3. Characterizations of SPEs 91 5.3.4. Preparation of Solid-state lithium batteries 93 5.4. Results and Discussion 94 5.4.1. Characterizations of copolymers 94 5.4.2. Characterizations of SPEs 97 5.4.3. Electrochemical properties of SPEs 100 5.4.4. SSLB performances 109 5.5. Conclusion 115 CHAPTER 6 Summary and Future Work 116 6.1. Summary 116 6.2. Future Work 117 References 119 Appendix 145

    [1] J.B. Goodenough, Electrochemical energy storage in a sustainable modern society, Energy & Environmental Science, 7 (2014) 14-18.
    [2] M. Armand, J.M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
    [3] J. Lu, Z. Chen, Z. Ma, F. Pan, L.A. Curtiss, K. Amine, The role of nanotechnology in the development of battery materials for electric vehicles, Nature Nanotechnology, 11 (2016) 1031-1038.
    [4] F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chemical Society Reviews, 49 (2020) 1569-1614.
    [5] P.G. Balakrishnan, R. Ramesh, T. Prem Kumar, Safety mechanisms in lithium-ion batteries, Journal of Power Sources, 155 (2006) 401-414.
    [6] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources, 208 (2012) 210-224.
    [7] A.W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, V. Hacker, Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes, RSC Advances, 4 (2014) 3633-3642.
    [8] A.W. Golubkov, S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G. Fauler, A. Thaler, V. Hacker, Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge, RSC Advances, 5 (2015) 57171-57186.
    [9] X. Wang, W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang, H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates, Nature Energy, 3 (2018) 227-235.
    [10] Y. Liu, Q. Liu, L. Xin, Y. Liu, F. Yang, E.A. Stach, J. Xie, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nature Energy, 2 (2017) 17083.
    [11] H.E. Park, C.H. Hong, W.Y. Yoon, The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries, Journal of Power Sources, 178 (2008) 765-768.
    [12] S. Liang, W. Yan, X. Wu, Y. Zhang, Y. Zhu, H. Wang, Y. Wu, Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance, Solid State Ionics, 318 (2018) 2-18.
    [13] Y. Liu, J.Y. Lee, L. Hong, In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes, Journal of Power Sources, 129 (2004) 303-311.
    [14] N.-S. Choi, Y.M. Lee, J.H. Park, J.-K. Park, Interfacial enhancement between lithium electrode and polymer electrolytes, Journal of Power Sources, 119-121 (2003) 610-616.
    [15] L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries, Advanced Energy Materials, 8 (2018) 1702657.
    [16] J.G. Kim, B. Son, S. Mukherjee, N. Schuppert, A. Bates, O. Kwon, M.J. Choi, H.Y. Chung, S. Park, A review of lithium and non-lithium based solid state batteries, Journal of Power Sources, 282 (2015) 299-322.
    [17] Y. Amiki, F. Sagane, K. Yamamoto, T. Hirayama, M. Sudoh, M. Motoyama, Y. Iriyama, Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet, Journal of Power Sources, 241 (2013) 583-588.
    [18] C.-W. Ahn, J.-J. Choi, J. Ryu, B.-D. Hahn, J.-W. Kim, W.-H. Yoon, J.-H. Choi, J.-S. Lee, D.-S. Park, Electrochemical properties of Li7La3Zr2O12-based solid state battery, Journal of Power Sources, 272 (2014) 554-558.
    [19] E. Kobayashi, L.S. Plashnitsa, T. Doi, S. Okada, J.-i. Yamaki, Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes, Electrochemistry Communications, 12 (2010) 894-896.
    [20] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, 180 (2009) 911-916.
    [21] C. Ma, J. Zhang, M. Xu, Q. Xia, J. Liu, S. Zhao, L. Chen, A. Pan, D.G. Ivey, W. Wei, Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries, Journal of Power Sources, 317 (2016) 103-111.
    [22] N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation, Solid State Ionics, 179 (2008) 689-696.
    [23] Q.-T. Pham, B. Azhar, C.-S. Chern, Novel Acrylonitrile-Based Polymers for Solid–State Polymer Electrolyte and Solid-State Lithium Ion Battery, ECS Meeting Abstracts, MA2022-01 (2022) 160.
    [24] S. Li, A.I. Mohamed, V. Pande, H. Wang, J. Cuthbert, X. Pan, H. He, Z. Wang, V. Viswanathan, J.F. Whitacre, K. Matyjaszewski, Single-Ion Homopolymer Electrolytes with High Transference Number Prepared by Click Chemistry and Photoinduced Metal-Free Atom-Transfer Radical Polymerization, ACS Energy Letters, 3 (2018) 20-27.
    [25] H.S. Lee, Z.F. Ma, X.Q. Yang, X. Sun, J. McBreen, Synthesis of a Series of Fluorinated Boronate Compounds and Their Use as Additives in Lithium Battery Electrolytes, Journal of The Electrochemical Society, 151 (2004) A1429.
    [26] H. Yang, N. Wu, Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review, Energy Science & Engineering, 10 (2022) 1643-1671.
    [27] G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure, Scientific Reports, 10 (2020) 4390.
    [28] A.R. Polu, H.-W. Rhee, Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries, International Journal of Hydrogen Energy, 42 (2017) 7212-7219.
    [29] M.M. Hiller, M. Joost, H.J. Gores, S. Passerini, H.D. Wiemhöfer, The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes, Electrochimica Acta, 114 (2013) 21-29.
    [30] O. Buriez, Y.B. Han, J. Hou, J.B. Kerr, J. Qiao, S.E. Sloop, M. Tian, S. Wang, Performance limitations of polymer electrolytes based on ethylene oxide polymers, Journal of Power Sources, 89 (2000) 149-155.
    [31] J. Yang, X. Wang, G. Zhang, A. Ma, W. Chen, L. Shao, C. Shen, K. Xie, High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation, Frontiers in Chemistry, 7 (2019).
    [32] J. Zhang, X. Huang, H. Wei, J. Fu, W. Liu, X. Tang, Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers, New Journal of Chemistry, 35 (2011) 614-621.
    [33] S.K. Fullerton-Shirey, J.K. Maranas, Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes, Macromolecules, 42 (2009) 2142-2156.
    [34] J.-L.A. Luque, E.M. Bergas, Characterisation of new polymer electrolytes based on polyethers and polyphosphazene blends, Solid State Ionics, 91 (1996) 75-80.
    [35] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries, Journal of the American Chemical Society, 136 (2014) 7395-7402.
    [36] L. Porcarelli, C. Gerbaldi, F. Bella, J.R. Nair, Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries, Scientific Reports, 6 (2016) 19892.
    [37] R.J. Sengwa, P. Dhatarwal, S. Choudhary, Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters, Electrochimica Acta, 142 (2014) 359-370.
    [38] J. Rolland, J. Brassinne, J.P. Bourgeois, E. Poggi, A. Vlad, J.F. Gohy, Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries, Journal of Materials Chemistry A, 2 (2014) 11839-11846.
    [39] C. Tiyapiboonchaiya, J.M. Pringle, J. Sun, N. Byrne, P.C. Howlett, D.R. MacFarlane, M. Forsyth, The zwitterion effect in high-conductivity polyelectrolyte materials, Nature Materials, 3 (2004) 29-32.
    [40] A. Narita, W. Shibayama, H. Ohno, Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices, Journal of Materials Chemistry, 16 (2006) 1475-1482.
    [41] E. Zygadło-Monikowska, Z. Florjańczyk, E. Wielgus-Barry, E. Hildebrand, Proton conducting gel polyelectrolytes based on 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) copolymers: Part II. Hydrogels, Journal of Power Sources, 159 (2006) 392-398.
    [42] I.V. Ferrari, M. Braglia, T. Djenizian, P. Knauth, M.L. Di Vona, Electrochemically engineered single Li-ion conducting solid polymer electrolyte on titania nanotubes for microbatteries, Journal of Power Sources, 353 (2017) 95-103.
    [43] S. Guhathakurta, K. Min, Lithium sulfonate promoted compatibilization in single ion conducting solid polymer electrolytes based on lithium salt of sulfonated polysulfone and polyether epoxy, Polymer, 51 (2010) 211-221.
    [44] H. Nederstedt, P. Jannasch, Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments, Polymer, 177 (2019) 231-240.
    [45] Y. Ding, X. Shen, J. Zeng, X. Wang, L. Peng, P. Zhang, J. Zhao, Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride), Solid State Ionics, 323 (2018) 16-24.
    [46] H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems—Characteristics and comparisons, Renewable and Sustainable Energy Reviews, 12 (2008) 1221-1250.
    [47] I. Sarbu, C. Sebarchievici, A Comprehensive Review of Thermal Energy Storage, Sustainability, 2018.
    [48] S. Koohi-Fayegh, M.A. Rosen, A review of energy storage types, applications and recent developments, Journal of Energy Storage, 27 (2020) 101047.
    [49] M. Yaseen, M.A. Khattak, M. Humayun, M. Usman, S.S. Shah, S. Bibi, B.S. Hasnain, S.M. Ahmad, A. Khan, N. Shah, A.A. Tahir, H. Ullah, A Review of Supercapacitors: Materials Design, Modification, and Applications, Energies, 2021.
    [50] S. Samantaray, D. Mohanty, I.M. Hung, M. Moniruzzaman, S.K. Satpathy, Unleashing recent electrolyte materials for next-generation supercapacitor applications: A comprehensive review, Journal of Energy Storage, 72 (2023) 108352.
    [51] S. Hameer, J.L. van Niekerk, A review of large-scale electrical energy storage, International Journal of Energy Research, 39 (2015) 1179-1195.
    [52] J.O. Besenhard, G. Eichinger, High energy density lithium cells: Part I. Electrolytes and anodes, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 68 (1976) 1-18.
    [53] G. Eichinger, J.O. Besenhard, High energy density lithium cells: Part II. Cathodes and complete cells, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 72 (1976) 1-31.
    [54] R. Korthauer, Handbuch lithium-ionen-batterien, Springer2013.
    [55] N. Lebedeva, Li-ion batteries for mobility and stationary storage applications, Publications Office of the European Union, (2018).
    [56] M. Eberhard, M. Tarpenning, The 21 st century electric car tesla motors, Tesla Motors, 17 (2006).
    [57] H. Chen, Z. Cao, J. Gu, Y. Cui, Y. Zhang, Z. Zhao, Z. Cheng, Q. Zhao, B. Li, S. Yang, Creating New Battery Configuration Associated with the Functions of Primary and Rechargeable Lithium Metal Batteries, Advanced Energy Materials, 11 (2021) 2003746.
    [58] T. Chen, Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, Q. Chen, Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems, Transactions of Tianjin University, 26 (2020) 208-217.
    [59] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nature Reviews Materials, 1 (2016) 16013.
    [60] W.F. Howard, R.M. Spotnitz, Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries, Journal of Power Sources, 165 (2007) 887-891.
    [61] C. Mikolajczak, M. Kahn, K. White, R.T. Long, Lithium-ion batteries hazard and use assessment, Springer Science & Business Media2012.
    [62] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
    [63] Y.G. Cho, C. Hwang, D.S. Cheong, Y.S. Kim, H.K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems, Advanced materials, 31 (2019) 1804909.
    [64] P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, X. Liu, Review on polymer-based composite electrolytes for lithium batteries, Frontiers in chemistry, 7 (2019) 522.
    [65] W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, Y. Lai, A critical review of battery thermal performance and liquid based battery thermal management, Energy Conversion and Management, 182 (2019) 262-281.
    [66] S.-H. Kim, K.-H. Choi, S.-J. Cho, J.-S. Park, K.Y. Cho, C.K. Lee, S.B. Lee, J.K. Shim, S.-Y. Lee, A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries, Journal of Materials Chemistry A, 2 (2014) 10854-10861.
    [67] G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects, Energy & Environmental Science, 7 (2014) 1307-1338.
    [68] Q. Zhao, Interphases of Polymer Electrolytes, Joule, 3 (2019) 1569-1571.
    [69] W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chemical Society Reviews, 46 (2017) 3006-3059.
    [70] J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q. Li, B.Y. Liaw, P. Liu, A. Manthiram, Y.S. Meng, V.R. Subramanian, M.F. Toney, V.V. Viswanathan, M.S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Pathways for practical high-energy long-cycling lithium metal batteries, Nature Energy, 4 (2019) 180-186.
    [71] Y. Qiao, K. Jiang, H. Deng, H. Zhou, A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion, Nature Catalysis, 2 (2019) 1035-1044.
    [72] M. Wang, Z. Peng, W. Luo, Q. Zhang, Z. Li, Y. Zhu, H. Lin, L. Cai, X. Yao, C. Ouyang, D. Wang, Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide, Advanced Science, 7 (2020) 2000237.
    [73] C. Sun, J. Liu, Y. Gong, D.P. Wilkinson, J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33 (2017) 363-386.
    [74] B. Peng, Y. Yao, Q. Chen, B. Hu, Chapter One - Solid-State High-Resolution NMR Studies on PEO-Based Crystalline Solid Polymer Electrolytes for Lithium-Ion Battery, in: G.A. Webb (Ed.) Annual Reports on NMR Spectroscopy, Academic Press2015, pp. 1-26.
    [75] M. Marzantowicz, J.R. Dygas, F. Krok, Z. Florjańczyk, E. Zygadło-Monikowska, Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte, Electrochimica Acta, 53 (2007) 1518-1526.
    [76] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J.-P. Bonnet, T.N.T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nature Materials, 12 (2013) 452-457.
    [77] P.P. Soo, B. Huang, Y.I. Jang, Y.M. Chiang, D.R. Sadoway, A.M. Mayes, Rubbery Block Copolymer Electrolytes for Solid‐State Rechargeable Lithium Batteries, Journal of The Electrochemical Society, 146 (1999) 32.
    [78] J. Rolland, E. Poggi, A. Vlad, J.-F. Gohy, Single-ion diblock copolymers for solid-state polymer electrolytes, Polymer, 68 (2015) 344-352.
    [79] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303-4418.
    [80] J. Mindemark, B. Sun, E. Törmä, D. Brandell, High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature, Journal of Power Sources, 298 (2015) 166-170.
    [81] K. Kimura, M. Yajima, Y. Tominaga, A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature, Electrochemistry Communications, 66 (2016) 46-48.
    [82] E.F. Spiegel, K.J. Adamic, B.D. Williams, A.F. Sammells, Solvation of lithium salts within single-phase dimethyl siloxane bisphenol-A carbonate block copolymer, Polymer, 41 (2000) 3365-3369.
    [83] M. Matsumoto, T. Uno, M. Kubo, T. Itoh, Polymer electrolytes based on polycarbonates and their electrochemical and thermal properties, Ionics, 19 (2013) 615-622.
    [84] W. He, Z. Cui, X. Liu, Y. Cui, J. Chai, X. Zhou, Z. Liu, G. Cui, Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries, Electrochimica Acta, 225 (2017) 151-159.
    [85] R.G. Hill, 10 - Biomedical polymers, in: L.L. Hench, J.R. Jones (Eds.) Biomaterials, Artificial Organs and Tissue Engineering, Woodhead Publishing2005, pp. 97-106.
    [86] Z. Zhang, D. Sherlock, R. West, R. West, K. Amine, L.J. Lyons, Cross-Linked Network Polymer Electrolytes Based on a Polysiloxane Backbone with Oligo(oxyethylene) Side Chains:  Synthesis and Conductivity, Macromolecules, 36 (2003) 9176-9180.
    [87] M. Grünebaum, M.M. Hiller, S. Jankowsky, S. Jeschke, B. Pohl, T. Schürmann, P. Vettikuzha, A.-C. Gentschev, R. Stolina, R. Müller, H.-D. Wiemhöfer, Synthesis and electrochemistry of polymer based electrolytes for lithium batteries, Progress in Solid State Chemistry, 42 (2014) 85-105.
    [88] B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, K. Amine, New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery, Journal of Power Sources, 119-121 (2003) 442-447.
    [89] Y. Kang, W. Lee, D. Hack Suh, C. Lee, Solid polymer electrolytes based on cross-linked polysiloxane-g-oligo(ethylene oxide): ionic conductivity and electrochemical properties, Journal of Power Sources, 119-121 (2003) 448-453.
    [90] Y. Lin, J. Li, Y. Lai, C. Yuan, Y. Cheng, J. Liu, A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries, RSC Advances, 3 (2013) 10722-10730.
    [91] T. Kanbara, M. Inami, T. Yamamoto, A. Nishikata, T. Tsuru, M. Watanabe, N. Ogata, New lithium salt ionic conductor using poly (vinyl alcohol) matrix, Chemistry Letters, 18 (1989) 1913-1916.
    [92] D.R. MacFarlane, F. Zhou, M. Forsyth, Ion conductivity in amorphous polymer/salt mixtures, Solid State Ionics, 113-115 (1998) 193-197.
    [93] G. Ek, F. Jeschull, T. Bowden, D. Brandell, Li-ion batteries using electrolytes based on mixtures of poly(vinyl alcohol) and lithium bis(triflouromethane) sulfonamide salt, Electrochimica Acta, 246 (2017) 208-212.
    [94] H.-K. Yoon, W.-S. Chung, N.-J. Jo, Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3, Electrochimica Acta, 50 (2004) 289-293.
    [95] M. Forsyth, J. Sun, D.R. MacFarlane, Novel polymer-in-salt electrolytes based on polyacrylonitrile (PAN) lithium triflate salt mixtures, Solid State Ionics, 112 (1998) 161-163.
    [96] P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, L. Chen, Progress in nitrile-based polymer electrolytes for high performance lithium batteries, Journal of Materials Chemistry A, 4 (2016) 10070-10083.
    [97] M. Forsyth, D.R. MacFarlane, A.J. Hill, Glass transition and free volume behaviour of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes, Electrochimica Acta, 45 (2000) 1243-1247.
    [98] A. Ferry, L. Edman, M. Forsyth, D.R. MacFarlane, J. Sun, NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN, Electrochimica Acta, 45 (2000) 1237-1242.
    [99] H.S. Choe, B.G. Carroll, D.M. Pasquariello, K.M. Abraham, Characterization of Some Polyacrylonitrile-Based Electrolytes, Chemistry of Materials, 9 (1997) 369-379.
    [100] B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen, F. Wang, Lithium ion conduction in polymer electrolytes based on PAN, Solid State Ionics, 85 (1996) 79-84.
    [101] D. Peramunage, D.M. Pasquariello, K.M. Abraham, Polyacrylonitrile‐Based Electrolytes with Ternary Solvent Mixtures as Plasticizers, Journal of The Electrochemical Society, 142 (1995) 1789.
    [102] O.V. Bushkova, I.E. Animitsa, B.I. Lirova, V.M. Zhukovsky, Lithium conducting solid polymer electrolytes based on polyacrylonitrile copolymers: Ion solvation and transport properties, Ionics, 3 (1997) 396-404.
    [103] O.V. Bushkova, V.M. Zhukovsky, B.I. Lirova, A.L. Kruglyashov, Fast ionic transport in solid polymer electrolytes based on acrylonitrile copolymers, Solid State Ionics, 119 (1999) 217-222.
    [104] Y. Shintani, H. Tsutsumi, Ionic conducting behavior of solvent-free polymer electrolytes prepared from oxetane derivative with nitrile group, Journal of Power Sources, 195 (2010) 2863-2869.
    [105] Y. Nakano, H. Tsutsumi, Ionic conductive properties of solid polymer electrolyte based on poly(oxetane) with branched side chains of terminal nitrile groups, Solid State Ionics, 262 (2014) 774-777.
    [106] Y. Nakano, K. Shinke, K. Ueno, H. Tsutsumi, Solid polymer electrolytes prepared from poly(methacrylamide) derivative having tris(cyanoethoxymethyl) group as its side chain, Solid State Ionics, 286 (2016) 1-6.
    [107] H. Wang, L. Sheng, G. Yasin, L. Wang, H. Xu, X. He, Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries, Energy Storage Materials, 33 (2020) 188-215.
    [108] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, Journal of Materials Chemistry A, 4 (2016) 10038-10069.
    [109] Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures, Chemical Society Reviews, 49 (2020) 8790-8839.
    [110] X. Chen, J. Xie, X. Zhao, T. Zhu, Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review, Advanced Energy and Sustainability Research, 2 (2021) 2000101.
    [111] L. Chen, S. Venkatram, C. Kim, R. Batra, A. Chandrasekaran, R. Ramprasad, Electrochemical Stability Window of Polymeric Electrolytes, Chemistry of Materials, 31 (2019) 4598-4604.
    [112] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, L. Chen, All solid-state polymer electrolytes for high-performance lithium ion batteries, Energy Storage Materials, 5 (2016) 139-164.
    [113] C. Niu, J. Liu, G. Chen, C. Liu, T. Qian, J. Zhang, B. Cao, W. Shang, Y. Chen, J. Han, J. Du, Y. Chen, Anion-regulated solid polymer electrolyte enhances the stable deposition of lithium ion for lithium metal batteries, Journal of Power Sources, 417 (2019) 70-75.
    [114] Y. An, X. Han, Y. Liu, A. Azhar, J. Na, A.K. Nanjundan, S. Wang, J. Yu, Y. Yamauchi, Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond, Small, 18 (2022) 2103617.
    [115] H. Maleki, J.N. Howard, Role of the cathode and anode in heat generation of Li-ion cells as a function of state of charge, Journal of Power Sources, 137 (2004) 117-127.
    [116] I. Aldalur, M. Martinez-Ibañez, A. Krztoń-Maziopa, M. Piszcz, M. Armand, H. Zhang, Flowable polymer electrolytes for lithium metal batteries, Journal of Power Sources, 423 (2019) 218-226.
    [117] S. Kaboli, H. Demers, A. Paolella, A. Darwiche, M. Dontigny, D. Clément, A. Guerfi, M.L. Trudeau, J.B. Goodenough, K. Zaghib, Behavior of Solid Electrolyte in Li-Polymer Battery with NMC Cathode via in-Situ Scanning Electron Microscopy, Nano Letters, 20 (2020) 1607-1613.
    [118] L. Chen, Y.-F. Huang, J. Ma, H. Ling, F. Kang, Y.-B. He, Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature, Energy & Fuels, 34 (2020) 13456-13472.
    [119] J. Chen, J. Wu, X. Wang, A.a. Zhou, Z. Yang, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries, Energy Storage Materials, 35 (2021) 70-87.
    [120] K.M. Diederichsen, E.J. McShane, B.D. McCloskey, Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries, ACS Energy Letters, 2 (2017) 2563-2575.
    [121] C.-H. Tsao, Y.-H. Hsiao, C.-H. Hsu, P.-L. Kuo, Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode, ACS Applied Materials & Interfaces, 8 (2016) 15216-15224.
    [122] Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y.-S. Hu, H. Li, X. Huang, L. Chen, M. Armand, Z. Zhou, Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion, Angewandte Chemie International Edition, 55 (2016) 2521-2525.
    [123] Y. Shen, G.-H. Deng, C. Ge, Y. Tian, G. Wu, X. Yang, J. Zheng, K. Yuan, Solvation structure around the Li+ ion in succinonitrile–lithium salt plastic crystalline electrolytes, Physical Chemistry Chemical Physics, 18 (2016) 14867-14873.
    [124] D.H. Wong, J.L. Thelen, Y. Fu, D. Devaux, A.A. Pandya, V.S. Battaglia, N.P. Balsara, J.M. DeSimone, Nonflammable perfluoropolyether-based electrolytes for lithium batteries, Proceedings of the National Academy of Sciences, 111 (2014) 3327-3331.
    [125] K. Kimura, J. Motomatsu, Y. Tominaga, Correlation between solvation structure and ion-conductive behavior of concentrated poly (ethylene carbonate)-based electrolytes, The Journal of Physical Chemistry C, 120 (2016) 12385-12391.
    [126] K. Kimura, Y. Tominaga, Understanding electrochemical stability and lithium ion‐dominant transport in concentrated poly (ethylene carbonate) electrolyte, ChemElectroChem, 5 (2018) 4008-4014.
    [127] K. Kimura, M. Yajima, Y. Tominaga, A highly-concentrated poly (ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature, Electrochemistry Communications, 66 (2016) 46-48.
    [128] Y. Tominaga, K. Yamazaki, Fast Li-ion conduction in poly (ethylene carbonate)-based electrolytes and composites filled with TiO 2 nanoparticles, Chemical communications, 50 (2014) 4448-4450.
    [129] D. Li, X. Ji, X. Gong, F. Tsai, Q. Zhang, L. Yao, T. Jiang, R.K. Li, H. Shi, S. Luan, The synergistic effect of poly (ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly (ethylene glycol) hybrid polymer electrolyte for lithium ion battery, Journal of Power Sources, 423 (2019) 349-357.
    [130] Q. Wang, W.-L. Song, L.-Z. Fan, Q. Shi, Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries, Journal of Power Sources, 279 (2015) 405-412.
    [131] M.S. Grewal, M. Tanaka, H. Kawakami, Bifunctional poly (ethylene glycol) based crosslinked network polymers as electrolytes for all‐solid‐state lithium ion batteries, Polymer International, 68 (2019) 684-693.
    [132] Y. Zhao, L. Wang, Y. Zhou, Z. Liang, N. Tavajohi, B. Li, T. Li, Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions for Li-Based Rechargeable Batteries, Advanced Science, 8 (2021) 2003675.
    [133] H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chemical Society Reviews, 46 (2017) 797-815.
    [134] M. Zhang, S. Yu, Y. Mai, S. Zhang, Y. Zhou, A single-ion conducting hyperbranched polymer as a high performance solid-state electrolyte for lithium ion batteries, Chemical Communications, 55 (2019) 6715-6718.
    [135] Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y.S. Hu, H. Li, X. Huang, Single lithium‐ion conducting polymer electrolytes based on a super‐delocalized polyanion, Angewandte Chemie International Edition, 55 (2016) 2521-2525.
    [136] E. Tsuchida, H. Ohno, N. Kobayashi, H. Ishizaka, Poly [(ι-carboxy) oligo (oxyethylene) methacrylate] as a new type of polymeric solid electrolyte for alkali-metal ion transport, Macromolecules, 22 (1989) 1771-1775.
    [137] C.H. Park, Y.-K. Sun, D.-W. Kim, Blended polymer electrolytes based on poly (lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries, Electrochimica acta, 50 (2004) 375-378.
    [138] L. Porcarelli, A.S. Shaplov, M. Salsamendi, J.R. Nair, Y.S. Vygodskii, D. Mecerreyes, C. Gerbaldi, Single-ion block copoly (ionic liquid) s as electrolytes for all-solid state lithium batteries, ACS applied materials & interfaces, 8 (2016) 10350-10359.
    [139] P. Barai, K. Higa, V. Srinivasan, Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study, Journal of The Electrochemical Society, 164 (2016) A180.
    [140] C. Monroe, J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, Journal of The Electrochemical Society, 152 (2005) A396.
    [141] M. Singh, O. Odusanya, G.M. Wilmes, H.B. Eitouni, E.D. Gomez, A.J. Patel, V.L. Chen, M.J. Park, P. Fragouli, H. Iatrou, Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes, Macromolecules, 40 (2007) 4578-4585.
    [142] N.S. Wanakule, A. Panday, S.A. Mullin, E. Gann, A. Hexemer, N.P. Balsara, Ionic conductivity of block copolymer electrolytes in the vicinity of order− disorder and order− order transitions, Macromolecules, 42 (2009) 5642-5651.
    [143] A. Panday, S. Mullin, E.D. Gomez, N. Wanakule, V.L. Chen, A. Hexemer, J. Pople, N.P. Balsara, Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes, Macromolecules, 42 (2009) 4632-4637.
    [144] D.T. Hallinan, S.A. Mullin, G.M. Stone, N.P. Balsara, Lithium metal stability in batteries with block copolymer electrolytes, Journal of The Electrochemical Society, 160 (2013) A464.
    [145] M. Chintapalli, T.N. Le, N.R. Venkatesan, N.G. Mackay, A.A. Rojas, J.L. Thelen, X.C. Chen, D. Devaux, N.P. Balsara, Structure and ionic conductivity of polystyrene-block-poly (ethylene oxide) electrolytes in the high salt concentration limit, Macromolecules, 49 (2016) 1770-1780.
    [146] R. Khurana, J.L. Schaefer, L.A. Archer, G.W. Coates, Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries, Journal of the American Chemical Society, 136 (2014) 7395-7402.
    [147] H.Y. Jung, P. Mandal, G. Jo, O. Kim, M. Kim, K. Kwak, M.J. Park, Modulating ion transport and self-assembly of polymer electrolytes via end-group chemistry, Macromolecules, 50 (2017) 3224-3233.
    [148] E. Glynos, P. Petropoulou, E. Mygiakis, A.D. Nega, W. Pan, L. Papoutsakis, E.P. Giannelis, G. Sakellariou, S.H. Anastasiadis, Leveraging molecular architecture to design new, all-polymer solid electrolytes with simultaneous enhancement in modulus and ionic conductivity, Macromolecules, 51 (2018) 2542-2550.
    [149] C. Zuo, M. Yang, Z. Wang, K. Jiang, S. Li, W. Luo, D. He, C. Liu, X. Xie, Z. Xue, Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries, Journal of Materials Chemistry A, 7 (2019) 18871-18879.
    [150] S. Choudhury, S. Choudhury, A highly reversible room-temperature lithium metal battery based on cross-linked hairy nanoparticles, Rational design of nanostructured polymer electrolytes and solid–liquid Interphases for lithium batteries, (2019) 35-57.
    [151] H. Wang, Q. Wang, X. Cao, Y. He, K. Wu, J. Yang, H. Zhou, W. Liu, X. Sun, Thiol‐branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium‐metal batteries, Advanced Materials, 32 (2020) 2001259.
    [152] J.L. Schaefer, S.S. Moganty, D.A. Yanga, L.A. Archer, Nanoporous hybrid electrolytes, Journal of Materials Chemistry, 21 (2011) 10094-10101.
    [153] S. Srivastava, J.L. Schaefer, Z. Yang, Z. Tu, L.A. Archer, 25th anniversary article: polymer–particle composites: phase stability and applications in electrochemical energy storage, Advanced Materials, 26 (2014) 201-234.
    [154] J.L. Schaefer, S.S. Moganty, L.A. Archer, Nanoscale organic hybrid electrolytes, Advanced Materials, 22 (2010) 3677-3680.
    [155] A. Agrawal, S. Choudhury, L.A. Archer, A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte, RSC Advances, 5 (2015) 20800-20809.
    [156] J. Hu, P. He, B. Zhang, B. Wang, L.-Z. Fan, Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries, Energy Storage Materials, 26 (2020) 283-289.
    [157] D. Qian, C. Ma, K.L. More, Y.S. Meng, M. Chi, Advanced analytical electron microscopy for lithium-ion batteries, NPG Asia Materials, 7 (2015) e193-e193.
    [158] J.-H. Lee, J.Y. Chung, C.M. Stafford, Effect of Confinement on Stiffness and Fracture of Thin Amorphous Polymer Films, ACS Macro Letters, 1 (2012) 122-126.
    [159] K. Polak-Kraśna, R. Dawson, L.T. Holyfield, C.R. Bowen, A.D. Burrows, T.J. Mays, Mechanical characterisation of polymer of intrinsic microporosity PIM-1 for hydrogen storage applications, Journal of Materials Science, 52 (2017) 3862-3875.
    [160] Q. Zhao, Y. Zhang, Y. Meng, Y. Wang, J. Ou, Y. Guo, D. Xiao, Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery, Nano Energy, 34 (2017) 408-420.
    [161] Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries, Advanced Materials, 33 (2021) 2100353.
    [162] Y.-C. Jung, M.-S. Park, D.-H. Kim, M. Ue, A. Eftekhari, D.-W. Kim, Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries, Scientific Reports, 7 (2017) 17482.
    [163] K. Ito, N. Nishina, H. Ohno, High lithium ionic conductivity of poly(ethylene oxide)s having sulfonate groups on their chain ends, Journal of Materials Chemistry, 7 (1997) 1357-1362.
    [164] Y. Nakai, K. Ito, H. Ohno, Ion conduction in molten salts prepared by terminal-charged PEO derivatives, Solid State Ionics, 113-115 (1998) 199-204.
    [165] Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen, M. Chen, Advances and prospects of PVDF based polymer electrolytes, Journal of Energy Chemistry, 64 (2022) 62-84.
    [166] Y. Li, W. Zhang, Q. Dou, K.W. Wong, K.M. Ng, Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries, Journal of Materials Chemistry A, 7 (2019) 3391-3398.
    [167] M. Sasikumar, M. Raja, R.H. Krishna, A. Jagadeesan, P. Sivakumar, S. Rajendran, Influence of Hydrothermally Synthesized Cubic-Structured BaTiO3 Ceramic Fillers on Ionic Conductivity, Mechanical Integrity, and Thermal Behavior of P(VDF–HFP)/PVAc-Based Composite Solid Polymer Electrolytes for Lithium-Ion Batteries, The Journal of Physical Chemistry C, 122 (2018) 25741-25752.
    [168] Q. Guo, Y. Han, H. Wang, S. Xiong, Y. Li, S. Liu, K. Xie, New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries, ACS Applied Materials & Interfaces, 9 (2017) 41837-41844.
    [169] G. Chen, C. Niu, Y. Chen, W. Shang, Y. Qu, Z. Du, L. Zhao, X. Liao, J. Du, Y. Chen, A single-ion conducting polymer electrolyte based on poly(lithium 4-styrenesulfonate) for high-performance lithium metal batteries, Solid State Ionics, 341 (2019) 115048.
    [170] P. Balding, R. Borrelli, R. Volkovinsky, P.S. Russo, Physical Properties of Sodium Poly(styrene sulfonate): Comparison to Incompletely Sulfonated Polystyrene, Macromolecules, 55 (2022) 1747-1762.
    [171] H.K. Tran, L. Musuvadhi Babulal, Y.-S. Wu, T.-F. Hung, W.-C. Chien, S.-H. Wu, R. Jose, S.J. Lue, C.-C. Yang, A Sandwich-Structure Composite Polymer Electrolyte Based on Poly(vinyl alcohol)/Poly(4-lithium styrene sulfonic acid) for High-Voltage Lithium Batteries, ACS Applied Energy Materials, 4 (2021) 8016-8029.
    [172] X. Li, S.H. Goh, Y.H. Lai, S.-M. Deng, Synthesis and hydrolysis of β-cyanoethyl ether of poly(vinyl alcohol), Journal of Applied Polymer Science, 73 (1999) 2771-2777.
    [173] J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer, 28 (1987) 2324-2328.
    [174] Y.S. Wu, Q.-T. Pham, C.-C. Yang, C.-S. Chern, L.M. Babulal, M. Seenivasan, J. Jeyakumar, T.H. Mengesha, T. Placke, G. Brunklaus, M. Winter, B.J. Hwang, Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries, ACS Sustainable Chemistry & Engineering, 10 (2022) 7394-7408.
    [175] E.A. Takara, S.V. Pereira, M.L. Scala-Benuzzi, M.A. Fernández-Baldo, J. Raba, G.A. Messina, Novel electrochemical sensing platform based on a nanocomposite of PVA/PVP/RGO applied to IgG anti- Toxoplasma gondii antibodies quantitation, Talanta, 195 (2019) 699-705.
    [176] J. Tan, X. Ao, A. Dai, Y. Yuan, H. Zhuo, H. Lu, L. Zhuang, Y. Ke, C. Su, X. Peng, B. Tian, J. Lu, Polycation ionic liquid tailored PEO-based solid polymer electrolytes for high temperature lithium metal batteries, Energy Storage Materials, 33 (2020) 173-180.
    [177] V. Pintus, A.J. Baragona, F. Cappa, C. Haiml, C. Hierl, K. Sterflinger, M. Schreiner, Multi-Analytical Investigations of Polymeric Materials in Modern Paints, Polymers, 14 (2022).
    [178] A.M. Sajjan, M.L. Naik, A.S. Kulkarni, U. Fazal-E-Habiba Rudgi, A. M, G.G. Shirnalli, S. A, P.B. Kalahal, Preparation and characterization of PVA-Ge/PEG-400 biodegradable plastic blend films for packaging applications, Chemical Data Collections, 26 (2020) 100338.
    [179] Y. Zhang, M. Irfan, Z. Yang, K. Liu, J. Su, W. Zhang, Lithium hydroxyphenyl propanesulfonate imparts composite solid polymer electrolytes with ultrahigh ionic conductivity for dendrite free lithium batteries, Chemical Engineering Journal, 435 (2022) 134775.
    [180] S. Ramesh, H.M. Ng, An investigation on PAN–PVC–LiTFSI based polymer electrolytes system, Solid State Ionics, 192 (2011) 2-5.
    [181] J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell, Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes, Progress in Polymer Science, 81 (2018) 114-143.
    [182] Q. Chen, S. Cabanas-Polo, O.-M. Goudouri, A.R. Boccaccini, Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment, Materials Science and Engineering: C, 40 (2014) 55-64.
    [183] R. Fang, B. Xu, N.S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J.B. Goodenough, Li2S6-Integrated PEO-Based Polymer Electrolytes for All-Solid-State Lithium-Metal Batteries, Angewandte Chemie International Edition, 60 (2021) 17701-17706.
    [184] J. Yin, X. Xu, S. Jiang, H. Wu, L. Wei, Y. Li, J. He, K. Xi, Y. Gao, High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature, Chemical Engineering Journal, 431 (2022) 133352.
    [185] S.J. Wen, T.J. Richardson, D.I. Ghantous, K.A. Striebel, P.N. Ross, E.J. Cairns, FTIR characterization of PEO + LiN(CF3SO2)2 electrolytes, Journal of Electroanalytical Chemistry, 408 (1996) 113-118.
    [186] L. Tao, X. Wang, F. Wu, B. Wang, C. Gao, X. Gao, Highly efficient Li+/Mg2+ separation of monovalent cation permselective membrane enhanced by 2D metal organic framework nanosheets, Separation and Purification Technology, (2022) 121309.
    [187] F.A. Amaral, R.M. Sousa, L.C.T. Morais, R.G. Rocha, I.O. Campos, W.S. Fagundes, C.N.P. Fonseca, S.C. Canobre, Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion, Journal of Applied Electrochemistry, 45 (2015) 809-820.
    [188] W. Bao, Z. Hu, Y. Wang, J. Jiang, S. Huo, W. Fan, W. Chen, X. Jing, X. Long, Y. Zhang, Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries, Chemical Engineering Journal, 437 (2022) 135420.
    [189] D. Vanitha, S.A. Bahadur, N. Nallamuthu, S. Athimoolam, A. Manikandan, Electrical Impedance Studies on Sodium Ion Conducting Composite Blend Polymer Electrolyte, Journal of Inorganic and Organometallic Polymers and Materials, 27 (2017) 257-265.
    [190] J. Gurusiddappa, W. Madhuri, R. Padma Suvarna, K. Priya Dasan, Studies on the morphology and conductivity of PEO/LiClO4, Materials Today: Proceedings, 3 (2016) 1451-1459.
    [191] S.B. Aziz, T.J. Woo, M.F.Z. Kadir, H.M. Ahmed, A conceptual review on polymer electrolytes and ion transport models, Journal of Science: Advanced Materials and Devices, 3 (2018) 1-17.
    [192] Q.-T. Pham, Y.-H. Jheng, D.-S. Tsai, J.-Y. Lai, C.-C. Hu, C.-S. Chern, Solid acrylonitrile-based copolymer electrolytes and their potential application in solid state battery, Journal of Applied Polymer Science, 139 (2022) 52158.
    [193] V. Bocharova, A.P. Sokolov, Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity, Macromolecules, 53 (2020) 4141-4157.
    [194] E.W. Stacy, C.P. Gainaru, M. Gobet, Z. Wojnarowska, V. Bocharova, S.G. Greenbaum, A.P. Sokolov, Fundamental Limitations of Ionic Conductivity in Polymerized Ionic Liquids, Macromolecules, 51 (2018) 8637-8645.
    [195] Y.-M. Chen, S.-T. Hsu, Y.-H. Tseng, T.-F. Yeh, S.-S. Hou, J.-S. Jan, Y.-L. Lee, H. Teng, Minimization of Ion–Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries, Small, 14 (2018) 1703571.
    [196] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat Nanotechnol, 12 (2017) 194-206.
    [197] Z. Wang, M. Zhu, Z. Pei, Q. Xue, H. Li, Y. Huang, C. Zhi, Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage, Materials Science and Engineering: R: Reports, 139 (2020) 100520.
    [198] F. Mo, G. Liang, Z. Huang, H. Li, D. Wang, C. Zhi, An Overview of Fiber-Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties, Advanced Materials, 32 (2020) 1902151.
    [199] K. Khan, B. Fu, H. Xin, B.A. Beshiwork, M.B. Hanif, J. Wu, Z. Fang, J. Yang, T. Li, C. Chen, M. Motola, Z. Xu, M. Wu, Composite polymer electrolyte incorporating WO3 nanofillers with enhanced performance for dendrite-free solid-state lithium battery, Ceramics International, 49 (2023) 4473-4481.
    [200] Z. Li, W.-X. Sha, X. Guo, Three-Dimensional Garnet Framework-Reinforced Solid Composite Electrolytes with High Lithium-Ion Conductivity and Excellent Stability, ACS Applied Materials & Interfaces, 11 (2019) 26920-26927.
    [201] Y. Zhang, W. Lu, L. Cong, J. Liu, L. Sun, A. Mauger, C.M. Julien, H. Xie, J. Liu, Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery, Journal of Power Sources, 420 (2019) 63-72.
    [202] Pravin N. Didwal, Y.N. Singhbabu, R. Verma, B.-J. Sung, G.-H. Lee, J.-S. Lee, D.R. Chang, C.-J. Park, An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries, Energy Storage Materials, 37 (2021) 476-490.
    [203] D. Li, X. Ji, X. Gong, F. Tsai, Q. Zhang, L. Yao, T. Jiang, R.K.Y. Li, H. Shi, S. Luan, D. Shi, The synergistic effect of poly(ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly(ethylene glycol) hybrid polymer electrolyte for lithium ion battery, Journal of Power Sources, 423 (2019) 349-357.
    [204] B. Wang, H. Lou, H. Xu, J. Zhao, Q. Wang, Q. Shi, Y. Deng, High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA–PEG copolymer for lithium ion batteries, RSC Advances, 8 (2018) 6373-6380.
    [205] B. Li, Q. Su, L. Yu, D. Wang, S. Ding, M. Zhang, G. Du, B. Xu, Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries, ACS Applied Materials & Interfaces, 11 (2019) 42206-42213.
    [206] H.K. Tran, Y.-S. Wu, W.-C. Chien, S.-h. Wu, R. Jose, S.J. Lue, C.-C. Yang, Composite Polymer Electrolytes Based on PVA/PAN for All-Solid-State Lithium Metal Batteries Operated at Room Temperature, ACS Applied Energy Materials, 3 (2020) 11024-11035.
    [207] Z. Lei, Q. Qiu, J. Shen, X. Ao, B. Zhang, Y. Guo, J. Wang, Y. Deng, C. Wang, Room-Temperature Solid-State Lithium Metal Batteries Using Metal Organic Framework Composited Comb-Like Methoxy Poly(ethylene glycol) Acrylate Solid Polymer Electrolytes, Macromolecular Materials and Engineering, 306 (2021) 2100336.
    [208] R. Lin, Y. He, C. Wang, P. Zou, E. Hu, X.-Q. Yang, K. Xu, H.L. Xin, Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries, Nat Nanotechnol, 17 (2022) 768-776.
    [209] X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Z. Sun, Internal failure of anode materials for lithium batteries — A critical review, Green Energy & Environment, 5 (2020) 22-36.
    [210] D. Ensling, M. Stjerndahl, A. Nytén, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes, Journal of Materials Chemistry, 19 (2009) 82-88.
    [211] M. Gora, W. Krzywiec, J. Mieczkowski, E.C. Rodrigues Maia, G. Louarn, M. Zagorska, A. Pron, Alternating copolymers of diketopyrrolopyrrole or benzothiadiazole and alkoxy-substituted oligothiophenes: spectroscopic, electrochemical and spectroelectrochemical investigations, Electrochimica Acta, 144 (2014) 211-220.
    [212] J.E. Morales-Ugarte, A. Benayad, C.C. Santini, R. Bouchet, Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage, ACS Applied Materials & Interfaces, 11 (2019) 21955-21964.
    [213] Z. Wang, Z. Li, Y. He, Z. Wang, Study of an Environmentally Friendly Surface Etching System of ABS for Improving Adhesion of Electroless Cu film, Journal of The Electrochemical Society, 158 (2011) D664.
    [214] M.M. Nasef, H. Saidi, Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis, Applied Surface Science, 252 (2006) 3073-3084.
    [215] Z. Shen, J. Zhong, S. Jiang, W. Xie, S. Zhan, K. Lin, L. Zeng, H. Hu, G. Lin, Y. Lin, S. Sun, Z. Shi, Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by In Situ Free-Radical Polymerization for Stable Li Metal Batteries, ACS Applied Materials & Interfaces, 14 (2022) 41022-41036.
    [216] B. Ramkumar, V. Aravindan, H. Ramasamy, K.V. Ajeya, J.-G. Ryu, H.-Y. Jung, Y.-S. Lee, Ternary metal oxide filled PEO-based polymer electrolyte for solid-state lithium metal battery: The role of filler particle size, Solid State Sciences, 132 (2022) 106958.
    [217] J. Shen, S. Liu, D. Bian, Z. Chen, H. Pan, C. Yang, W. Tian, Y. Li, L. Kong, H. Quan, D.-W. Wang, S. Zhu, Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide, Electrochimica Acta, 456 (2023) 142482.
    [218] Y.-S. Hu, Batteries: Getting solid, Nature Energy, 1 (2016) 16042.
    [219] F. Wu, K. Zhang, Y. Liu, H. Gao, Y. Bai, X. Wang, C. Wu, Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects, Energy Storage Materials, 33 (2020) 26-54.
    [220] Z. Song, F. Chen, M. Martinez-Ibañez, W. Feng, M. Forsyth, Z. Zhou, M. Armand, H. Zhang, A reflection on polymer electrolytes for solid-state lithium metal batteries, Nature Communications, 14 (2023) 4884.
    [221] M.S.M. Misenan, A.S.A. Khiar, T. Eren, Polyurethane-based polymer electrolyte for lithium ion batteries: a review, Polymer International, 71 (2022) 751-769.
    [222] C. Zhang, Q. Hu, Y. Shen, W. Liu, Fast-Charging Solid-State Lithium Metal Batteries: A Review, Advanced Energy and Sustainability Research, 3 (2022) 2100203.
    [223] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials Chemistry A, 3 (2015) 19218-19253.
    [224] S. Ibrahim, M.M. Yassin, R. Ahmad, M.R. Johan, Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes, Ionics, 17 (2011) 399-405.
    [225] A. Magistris, P. Mustarelli, E. Quartarone, C. Tomasi, Transport and thermal properties of (PEO)n–LiPF6 electrolytes for super-ambient applications, Solid State Ionics, 136-137 (2000) 1241-1247.
    [226] O. Verners, B.J. Thijsse, A.C.T. van Duin, A. Simone, Salt concentration effects on mechanical properties of LiPF6/poly(propylene glycol) diacrylate solid electrolyte: Insights from reactive molecular dynamics simulations, Electrochimica Acta, 221 (2016) 115-123.
    [227] R. Dupon, B.L. Papke, M.A. Ratner, D.H. Whitmore, D.F. Shriver, Influence of ion pairing on cation transport in the polymer electrolytes formed by poly(ethylene oxide) with sodium tetrafluoroborate and sodium tetrahydroborate, Journal of the American Chemical Society, 104 (1982) 6247-6251.
    [228] G. Wipff, P. Weiner, P. Kollman, A molecular-mechanics study of 18-crown-6 and its alkali complexes: an analysis of structural flexibility, ligand specificity, and the macrocyclic effect, Journal of the American Chemical Society, 104 (1982) 3249-3258.
    [229] Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Ionic Conduction in Polymer-Based Solid Electrolytes, Advanced Science, 10 (2023) 2201718.
    [230] B.A. Fortuin, L. Meabe, S.R. Peña, Y. Zhang, L. Qiao, J. Etxabe, L. Garcia, H. Manzano, M. Armand, M. Martínez-Ibañez, J. Carrasco, Molecular-Level Insight into Charge Carrier Transport and Speciation in Solid Polymer Electrolytes by Chemically Tuning Both Polymer and Lithium Salt, The Journal of Physical Chemistry C, 127 (2023) 1955-1964.
    [231] B.K. Cho, A. Jain, S.M. Gruner, U. Wiesner, Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons, Science, 305 (2004) 1598-1601.
    [232] Y. Ye, S. Sharick, E.M. Davis, K.I. Winey, Y.A. Elabd, High Hydroxide Conductivity in Polymerized Ionic Liquid Block Copolymers, ACS Macro Letters, 2 (2013) 575-580.
    [233] C.-W. Liew, S. Ramesh, A.K. Arof, Enhanced capacitance of EDLCs (electrical double layer capacitors) based on ionic liquid-added polymer electrolytes, Energy, 109 (2016) 546-556.
    [234] Y. Hirashima, H. Sato, A. Suzuki, ATR-FTIR Spectroscopic Study on Hydrogen Bonding of Poly(N-isopropylacrylamide-co-sodium acrylate) Gel, Macromolecules, 38 (2005) 9280-9286.
    [235] X. Li, K. Huang, Y. Xu, H. Liu, Interaction of sodium and potassium ions with PEO-PPO copolymer investigated by FTIR, Raman and NMR, Vibrational Spectroscopy, 75 (2014) 59-64.
    [236] X. Lv, C. Liu, S. Song, Y. Qiao, Y. Hu, P. Li, Z. Li, S. Sun, Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications, RSC Advances, 8 (2018) 2941-2949.
    [237] Y. Zhou, P. Dong, Y. Wei, J. Qian, D. Hua, Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly, Colloids and Surfaces B: Biointerfaces, 132 (2015) 132-137.
    [238] A. Awadhia, S.L. Agrawal, Structural, thermal and electrical characterizations of PVA:DMSO:NH4SCN gel electrolytes, Solid State Ionics, 178 (2007) 951-958.
    [239] P. Ke, D. Zeng, K. Xu, J. Cui, X. Li, G. Wang, Preparation of Quaternary Ammonium Salt-Modified Chitosan Microspheres and Their Application in Dyeing Wastewater Treatment, ACS Omega, 5 (2020) 24700-24707.
    [240] N. Molinari, J.P. Mailoa, B. Kozinsky, Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI, Chemistry of Materials, 30 (2018) 6298-6306.
    [241] B. Azhar, Q.-T. Pham, M. Afiandika, C.-S. Chern, Polymers with Cyanoethyl Ether and Propanesulfonate Ether Side Chains for Solid-State Li-Ion Battery Applications, ACS Applied Energy Materials, 6 (2023) 3525-3537.
    [242] T.W. Kang, J.-H. Lee, J. Lee, J.H. Park, J.-H. Shin, J.-M. Ju, H. Lee, S.U. Lee, J.-H. Kim, An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries, Advanced Materials, 35 (2023) 2301308.
    [243] G. Li, X. Guan, A. Wang, C. Wang, J. Luo, Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes, Energy Storage Materials, 24 (2020) 574-578.
    [244] Z. Fan, B. Ding, B. Hu, Z. Li, D. Xiao, C. Xu, H. Dou, X. Zhang, Failure mechanisms investigation of ultra-thin composite polymer electrolyte-based solid-state lithium metal batteries, Electrochimica Acta, 436 (2022) 141441.

    無法下載圖示 全文公開日期 2033/12/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE