簡易檢索 / 詳目顯示

研究生: 李長凌
Chang-lin Lee
論文名稱: AZ31B與AZ61A鎂合金擠製板CO2雷射銲接性研究
Effects of Welding Heat Input on CO2 Laser Weldability of AZ31B and AZ61A Magnesium Alloy Extrusion Sheet
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 向四海
Su - Hai Hsiang
鄭慶民
Ching-Min Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 78
中文關鍵詞: 鎂合金CO2雷射銲接性液化裂縫
外文關鍵詞: Keywords:Magnesium alloys, CO2 Laser, Weldability, Liquation Cracking
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文主旨在探討連續式CO2 雷射銲接製程對AZ31B與AZ61A鎂合金銲接性之影響,並與傳統氬銲製程進行比較,研究範圍為銲接參數對微觀組織、化學成份、機械性質及破壞形態等影響。
  研究發現不同功率、銲接走速但入熱量相同時,會得到相同的銲透深度,深比則隨入熱量增加而增加。銲道中以掃瞄式電子顯微鏡(Scanning electron microscope , SEM)觀察發現AZ61A之析出物數量較AZ31B為多,且析出物尺寸隨入熱量增加而增加。而電子微探儀(Electron probe X-ray microanalysis , EPMA)成份定量分析顯示銲道有合金元素減少的情況,隨入熱量增加而元素損失也越多。於SEM下在AZ61A銲道邊緣發現有液化裂縫存在,能量分散光譜儀(Energy dispersive X-ray spectroscopy , EDS)掃瞄結果顯示微裂縫邊緣有鋁、鋅偏析的現象。
  微硬度試驗結果雷射銲道有硬度提高的現象。而拉伸試驗中雷射銲道試片抗拉強度高於TIG試片,因為液化裂縫的影響導致兩種合金呈現不同的拉伸破壞形式。


Effects of welding heat input on CO2 laser weldability of AZ31B and AZ61A magnesium alloy extrusion sheet which has been investigated. CO2 laser beam welding was conducted on AZ31B and AZ61A magnesium alloy sheets at different welding speeds and input density. The depth-to-width ratio, mechanical property, microstructure, chemical component , and fractography, of the welds were evaluated using optical microscopy, tensile tests, hardness tests, energy dispersive X-ray spectroscopy, and electron probe for microanalysis, scanning electron microscope, and compared with TIG(tungsten inert gas) welding.
Results indicated that both the hardness and tensile strength of laser beam welding were higher than those of TIG welds. It was shown that both the volume of precipitates increased on welded metal while the increase of heat input, AZ61A got more precipitates than AZ31B. But welded metal lose of alloy element increased on increase of heat input. Liquation Crack and segregation of Al and Zn were found on the edge of laser welded bead of AZ61A, but not found in TIG welded bead or in AZ31B. Liquation Crack led to different tensile fractography on two alloys.

目 錄 中文摘要 ..........................................I Abstract .........................................II 誌 謝 ........................................III 目 錄 ..........................................V 表 目 錄 .......................................VIII 圖 目 錄 .........................................IX 第一章 前言 ......................................1 1.1 研究背景 ..................................1 1.2 研究目的 ..................................2 第二章 文獻回顧 ..................................3 2.1 鎂合金簡介 ................................3 2.2 鎂合金板材之擠製特性 ......................6 2.3 氬銲及CO2雷射銲接 .........................7 2.3.1 氬銲 ......................................7 2.3.2 CO2雷射銲接 ...............................9 2.4 鎂合金之銲接特性 .........................11 2.5 液化裂縫(Liquation Cracking) .............13 第三章 實驗方法 .................................17 3.1 實驗流程 .................................17 3.2 實驗設備 .................................18 3.3 材料準備 .................................19 3.4 銲接參數設計 .............................20 3.5 金相顯微組織觀察 .........................20 3.6 拉伸試驗 .................................21 3.7 EDS與EPMA成份分析 ........................22 3.8 微硬度試驗 ...............................23 3.9 破斷面SEM觀察與分析 ......................23 3.10 破斷側面OM觀察與分析 .....................23 第四章 結果與討論 ...............................24 4.1 金相OM觀察 ...............................24 4.2 微硬度試驗 ...............................40 4.3 拉伸試驗 .................................41 4.4 EPMA元素定量分析與SEM觀察及EDS成份分析 ...42 4.4.1 EPMA .....................................42 4.4.2 SEM觀察 ..................................42 4.4.3 析出物EDS分析 ............................47 4.5 破斷面SEM觀察 ............................56 4.6 破斷側面OM觀察 ...........................68 第五章 結論 .....................................71 第六章 未來研究建議 .............................73 參考文獻 .........................................74 作者簡介 .........................................78

[1] 黃國維、蔡幸甫,「鎂合金產業技術及市場發展趨勢專題調查」,工業技術研究院產業經濟與資訊服務中心,民國九十年。
[2] 黃義順、王星豪,「鎂及鎂合金之基本特性與銲接性」,銲接與切割,國立海洋大學,Vol.13, No.3, 第33~42頁, 民國九十二年。
[3] 蔡宗亮,「鎂合金銲接」,台灣鎂合金協會91年度南區之技術研討會,台南。
[4] 葉哲政,「鎂合金汽車零組件產品應用現況與趨勢」,機械工業雜誌,第259期。
[5] ASM, Metals Handbook : Magnesium Alloys, Vol.8, 8thed. , pp. 314-319 (1976).
[6] 林益煒,AZ31鎂合金板材之熱間擠製加工製程及其機械性質之研究,碩士論文,國立臺灣科技大學,民國九十四年。
[7] 王建義,「鎂合金板材之壓型加工技術」,工業材料雜誌,中科院材料暨光電研究所,民國九十年二月。
[8] 周長彬、蔡丕椿、郭央諶,銲接學,全華出版社,台北,民國八十四年。
[9] 姜志華編著,合金電弧銲接及硬軟銲應用技術,徐氏基金會,民國八十四年,第1~136頁。
[10] 丁勝懋,雷射工程導論,中央圖書出版社,民國八十二年,第183-209頁、第463~480頁。
[11] Weisheit A., R. Gaium, and B. L. Mordike, “CO2 Laser Beam Welding of Magnesuim-Based Aollyed, ” Journal of Welding Research Supplement, Apr, pp. 149-154 (1998).
[12] Kou S., Welding Metallurgy, New York ,Wiley, pp. 168 (1987).
[13] Kou S., “Solidification and Liquation Cracking Issues in Welding,” JOM, pp. 37-42(2003).
[14] Huang C. and S. Kou, “Liquation Cracking in Full-Penetration Al-Cu Welds,” Welding Journal Vol. 83, 50s-58s (2004).
[15] Massalski T. B., H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, pp. 170 (1990).
[16] Ohno M., D. Mirkovic, R. Schmid-Fetzer, “Phase Equilibria and Solidification of Mg-rich Mg–Al–Zn Alloys,” Materials Science and Engineering A Vol. 421, pp.328–337 (2006).
[17] Oates W. R., Welding Handbook, Vol. 1, American Welding Society, 1987.
[18] Oates W. R., Welding Handbook, Vol. 3, American Welding Society, 1996.
[19] Liu L., J. Wang,G. Song, “Hybrid laser–TIG Welding, Laser Beam Welding and Gas Tungsten Arc Welding of AZ31B Magnesium Alloy,” Materials Science and Engineering A Vol. 381, pp. 129-133 (2004).
[20] Dhahri M., J. E. Masse, J. F. Mathieu, G. Barreau, and M. Autric6, “LaserWelding of AZ91 and WE43 Magnesium Alloys for Automotive and Aerospace Industries,” ADVANCED ENGINEERING MATERIALS, 3, No. 7, pp. 504-507 (2001).
[21] Ting C. C. , C. C. Guang; L. T. Feng; W. C. Chung, “A Study of Weldability and Fracture Modes in Electron beam Weldments of AZ series magnesium alloys,” Materials Science and Engineering A, Vol. 435-436, Nov 5, pp. 672-680 (2006).
[22] Heiple, C. R. ; Rope, J. R. ; Stagner, R. T. ; Aden, R. J. , “Surface Active Element Effect on the Shape of GTA, Laser, and Electron Beam Welds,” Welding Journal (Miami, Fla), Vol. 62, No. 3, Mar, pp. 72-s-77-s (1983)
[23] 吳信輝,電子束或電弧銲接鎂合金之微織構與機械分析,碩士論文,國立中山大學,民國九十二年。
[24] Pan L. K., C. C. Wang, Y. C. Hsiao, K. C. Hod, “Optimization of Nd:YAG Laser Welding on to Magnesium Alloy Via Taguchi Analysis,” Optics & Laser Technology Vol. 37, pp. 33-42 (2004).
[25] Liu C., D. O. Northwood and S.D. Bhole, “Tensile Fracture Behavior in CO2 Laser Beam Welds of 7075-T6 Aluminum Alloy,” Materials and Design Vol. 25, pp. 573-577 (2004).
[26] 敖仲寧,雷射銲接研究。國際銲接學會亞洲太平洋國際學術會議,民國八十九年。
[27] 李岳倫,鋁鋅系列鎂合金銲接性之研究,碩士論文,國立師範大學,台北,民國九十四年。
[28] 鄭慶民、黃俊榮、周長彬,「鎂合金雷射銲接之熱裂縫研究」,台灣銲接協會95年度論文發表會論文集,高雄縣,民國九十五年。
[29] Huang C. and S. Kou, “Liquation Cracking in Full-Penetration Al-Mg-Si Welds,” Welding Journal 83, 111s-122s (2004)
[30] Zhu J., L. Li, Z. Liu, “CO2 and Diode Laser Welding of AZ31 Magnesium Alloy,” Applied Surface Science Vol. 247, pp. 300–306 (2005).
[31] Schellhorn M., A. Eichhorn, “Spectoscopic Compatison of Aluminium Welding Plasmas Produced by High Power CO and CO2 Lasers,” Optics & Laser Technology, Vol. 28, No. 5, pp. 405-407 (1996).
[32] Tse H. C., H. C. Man, T. M. Yue, “Effect of Electric Field on Plasma Control During CO2 Laser Welding,” Optics and Lasers in Engineering Vol. 33, pp. 181-189 (2000).
[33] 廖芳俊,「鍛造用Mg-Al-Zn系鎂合金熔銲製程之探討」,工業材料雜誌147期,民國九十年,第169~175頁。
[34] Baselack W. A., S. J. Savage, and F. H. Froes, “Laser Weld Heat-Affected Zone Liquidation and Cracking in High-Strength Mg-Base Alloy,” Journal of Maerials Science Letters, pp. 935-939 (1986).

QR CODE