簡易檢索 / 詳目顯示

研究生: 簡榮照
Jung-chao Chien
論文名稱: 高效率無橋交錯式主動功率因數修正器之研製
Study and Implementation of a High-Efficiency Bridgeless Interleaved Active Power Factor Corrector
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
口試委員: 劉邦榮
Pang-jung Liu
林景源
Jing-yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 無橋式功率因數修正器交錯式功率因數修正器連續導通模式
外文關鍵詞: bridgeless power factor corrector, interleaved power factor correctors, continuous conduction mode
相關次數: 點閱:392下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要目的係研製一具有高功因、低諧波、高效率及高功率密度之無橋交錯式連續導通模式功率因數修正器。雙相交錯式控制策略不只保有傳統單相脈波寬度調變無橋式轉換器的優點,且在高輸出功率下更可改善功率元件高耐流、儲能電感體積過大、輸出電容過大及EMI濾波器體積等問題。
本論文實際製作一3.4 kW無橋交錯式功率因數修正器,以驗證所提之分析與設計考量是否合理,實作電路之控制IC使用德州儀器公司所生產的20腳位UCC28070。經測量結果證明,雙相交錯式架構確實可以減少電流漣波,適用於大功率應用場合。整體電路於輕載到滿載能有效穩定輸出電壓,中載到滿載功率因數皆在0.96以上,在輕載至滿載實測效率皆可達96%以上,且在切換頻率75 kHz,輸入電壓為264 V,輸出3.4 kW時有最高效率為98.8%。


This thesis is focused on the design and implementation of a two-phase bridgeless interleaved (BILI) boost power factor corrector (PFC) under continuous conduction mode (CCM) to achieve a high power factor, low input current harmonics, high efficiency and high power density. A two-phase bridgeless interleaved boost PFC features the advantages of a single-phase PWM bridgeless converter. In addition, the current ratings of the power switches, and the volumes of the inductors, output capacitors and EMI filters can be reduced.
A 3.4-kW two-phase bridgeless interleaved boost PFC is implemented in the laboratory. Experiments are conducted and satisfactory results are measured to confirm the effectiveness and the feasibility of the theoretical analysis and design considerations. The UCC28070 is used as the control IC for the PFC. It is verified that the current ripples are greatly reduced with the two-phase interleaved topology. Thus the two-phase interleaved PFC are especially suitable for serving as a pre-regulator in the high-power applications. The DC output voltage is well-regulated. The power factor is greater than 0.96 from half load to full load. The measured efficiency is greater than 96% from light load to full load. A peak efficiency of 98.8% is recorded at 75-kHz switching frequency, 264-V input and 3.4-kW load.

摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 vii 表索引 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與方法 4 1.3 內文編排方式 5 第二章 功率因數修正原理 7 2.1 功率因數與總諧波失真之定義 7 2.2 升壓型功率因數修正器之原理 10 2.3 無橋式功率因數修正器之原理 12 2.4 雙相交錯式功率因數修正器之原理 16 2.5 主動式功率因數修正電路之控制方法 20 2.5.1 平均電流控制法 22 2.5.2 峰值電流控制法 24 2.5.3 磁滯電流控制法 26 2.5.4 電壓隨耦控制法 28 第三章 無橋交錯式功率因數修正器 30 3.1 架構簡介 30 3.2 電路動作原理及穩態漣波分析 31 3.2.1 正半週時動作原理 32 3.2.2 負半週時動作原理 32 3.2.3 正半週時D > 0.5電路動作分析 33 3.2.4 正半週時D < 0.5電路動作分析 38 3.3 功率因數修正器拓撲之比較 43 3.4 儲能電感分析 45 3.5 輸出電容分析 48 3.6 功率開關及功率二極體分析 51 第四章 以UCC28070設計之功率因數修正器 53 4.1 UCC28070內部方塊圖與接腳圖介紹 54 4.2 3.4 kW無橋交錯式功率因數修正器設計 57 4.2.1 儲能電感設計 58 4.2.2 輸出電容設計 59 4.2.3 功率開關的選擇 60 4.2.4 比流器與取樣電阻設計 62 4.2.5 峰值電流限制設計 63 4.2.6 工作頻率與最大責任週期的選擇 63 4.2.7 輸出電壓回授設計 63 4.2.8 VINAC取樣設計 64 4.2.9 電壓迴路補償設計 64 4.2.10 電流迴路補償設計 65 4.2.11 軟啟動時間設計 67 4.2.12 抖頻減少EMI設計 67 第五章 實驗結果與波形 68 5.1 量測數據 69 5.2 實驗結果討論 81 第六章 結論與未來展望 82 6.1 結論 82 6.2 未來展望 84 參考文獻 85

[1]F. Musavi, W. Eberle and W. G. Dunford, “A High-Performance Single-Phase Bridgeless Interleaved PFC Converter for Plug-In Hybrid Electric Vehicle Battery Chargers,” IEEE Trans. Ind. Electron., Vol. 47, No. 4, pp. 1833-1834, July. 2011.
[2]A. I. Pressman, “Switching Power Supply Design,” McGraw-Hill, Inc., 1998.
[3]洪瑞鴻,2 kW功率因數修正器研製,國立臺灣科技大學電子工程系研究所碩士論文,2005年。
[4]宋自恆、林慶仁,功率因數修正器之原理與常用元件規格,新電子科技雜誌217期,2004年。
[5]N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics Converters, Applications and Design,” John Wiley & Sons, 3rd Edition, 2003.
[6]S. Kim and P. N. Enjeti, “A Modular Single-Phase Power Factor Correction Scheme With a Harmonic Filtering Function,” IEEE Trans. Ind. Electron., Vol. 50, No. 2, pp. 328-335, April. 2003.
[7]R. Redl, “An Economical Single-Phase Passive Power Factor Corrected Rectifier: Topology, Operation, Extensions, and Design for Compliance,” Proc. of IEEE Applied Power Electronics Conference and Exposition, Vol. 1, pp. 454-460, February. 1998.
[8]O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single Phase Power Factor Correction: A Survey,” IEEE Trans. Power Electron., Vol. 18, No 3, pp. 749-754, May. 2003.
[9]R. Martinez and P. N. Enjeti, “A High-Performance Single-Phase Rectifier with Input Power Factor Correction,” IEEE Trans. Power Electron., Vol. 11, No. 2, pp. 311-317, March. 1996.
[10]P. C. TODD, “UC3854 Controlled Power Factor Correction Circuit Design,” Application Note U-134.
[11]C. S. Lin, T. M. Chen, and C. L. Chen, “Analysis of Low Frequency Harmonics for Continuous-Conduction-Mode Boost Power Factor Correction,” IEE Proc. Electric Power Application, Vol. 148, pp. 202-206, 2001.
[12]L. Dixon, “Average Current Mode Control of Switching Power Supplies,” Unitrode Application Note, U-140, pp. 356-369.
[13]D. S. Chen, J. S. Lai, “A Study of Power Correction Boost Converter Operating at CCM-DCM Mode,” Proc. of IEEE Southeastcon, April. 1993.
[14]J. S. Lai, D. Chen, “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, March. 1993.
[15]Texas Instruments Inc., “Interleaving Continuous Conduction Mode PFC Controller,” Data Sheet, 2008.
[16]Texas Instruments Inc., “350-W Interleaved PFC Pre-Regulator,” User's Guide, 2005.
[17]P. Kong, S. Wang, and F. C. Lee, “Common Mode EMI Noise Suppression for Bridgeless PFC Converters,” IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 291-297, Jan. 2008.
[18]T. Baur, M. Reddig, and M. Schlenk, “Line-Conducted EMI-Behaviour of a High Efficient PFC-Stage without Input Rectification,” Infineon Technol., Milpitas, CA, 2006.
[19]T. F. Wu, J. C. Hung, S. Y. Tseng and Y. M. Chen, “A Single-Stage Fast Regulator with PFC Based on an Asymmetrical Half-Bridge Topology,” IEEE Trans. Ind. Electron., Vol. 52, No. 1, pp. 139-150, 2005.
[20]L. Rossetto, G. Spiazzi and P. Tenti, “Control Techniques for Power Factor Correction Converters,” Proc. of EPE International Power Electronics and Motion Control Conference, pp. 1310-1318, 1994.
[21]S. Wall and R. Jackson, “Fast Controller Design for Single-Phase Power Factor Correction Systems,” IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 654-660, 1997.
[22]Z. Yang and P. C. Sen, “Power Factor Correction Circuits with Robust Current Control Technique,” IEEE Aerosp. Electron. Syst. Mag., Vol. 38, No. 4, pp. 1210-1219, 2002.
[23]M. Orabi and T. Ninomiya, “A Unified Design of Single-Stage and Two-Stage PFC Converter,” Proc. of IEEE Power Electronics Specialists Conference, pp. 1720-1725, 2003.
[24]M. M. Jovanovic and Y. Jang, “State-of-the-Art, Single-Phase, Active Power Factor Correction Techniques for High-Power Applications an Overview,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 701-708, 2005.
[25]J. S. Lai and D. Chen, “Design Consideration for Power Factor Correction Boost Converter Operating at the Boundary of Continuous Conduction Mode and Discontinuous Conduction Mode,” Proc. of IEEE Applied Power Electronics Conference and Exposition, pp. 267-273, 1993.
[26]T. F. Wu and T. H. Yu, “Off-Line Applications with Single-Stage Converters,” IEEE Trans. Ind. Electron., Vol. 44, No. 5, pp. 638-647, 1997.
[27]H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power Factor Correction,” Proc. of IEEE Power Electronics Specialists Conference, pp. 1162-1172, 1998.
[28]F. J. F. Martin, C. B.Viejo, J. C. A. Anton, M. A. P. Garcia, M. Rico-Secades and J. M. Alonso, “Analysis and Design of a High Power Factor, Single-Stage Electronic Ballast for High-Intensity Discharge Lamps,” IEEE Trans. Power Electron., Vol. 18, No. 2, pp. 558-569, 2003.
[29]H. J. Chiu and L. W. Lin, “A High-Efficiency Soft-Switched AC/DC Converter with Current-Doubler Synchronous Rectification,” IEEE Trans. Ind. Electron., Vol. 52, No. 3, pp. 709-718, 2005.
[30]Texas Instruments Inc., “350-W, Two-Phase Interleaved PFC Pre-Regulator Design Review,” Application Report, 2005.
[31]T. Ishii and Y. Mizutani, “Power Factor Correction Using Interleaving Technique for Critical Mode Switching Converters,” IEEE Power Electronics Specialists Conference, Vol. 1, pp. 905-910, May. 1998.
[32]P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductor,” IEEE Trans. Ind. Electron., Vol. 47, No. 4, pp. 787-795, August. 2000.
[33]J. R. Pinheiro, H. A. Grundling, D. L. R. Vidor and J. E. Baggio, “Control Strategy of an Interleaved Boost Power Factor Correction Converter,” IEEE Power Electronics Specialists Conference, Vol. 1, pp. 137-142, July. 1999.
[34]H. G. Lei, X. J. Yang, H. L. Miao, and P. S. Ye, “Power Switch Deiving Techniques in Single-Phase Dual-Parallel Interleaved Boost PFC,” IEEE Power Electronics and Drive Systems, Vol. 2, pp. 1086-1089, November. 2003.
[35]R. Teodorescu, S. B. Kjaer, M. Nielsen, S. Blaabjerg, “Comparative Analysis of Three Interleaved Boost Power Factor Corrected Topologies in DCM,” Proc. of IEEE Power Electronics Specialists Conference, pp. 3-7, June. 2001.
[36]T. W. Heo, Y. D. Son, E. Santi, “Analysis of the Interleaved Type Power Factor Correction Converter in Discontinuous Current Mode,” Proc. of IEEE IECON, pp. 2706-2711, Nov. 2004.
[37]M. Veerachary, T. Senjyu, K. Uezato, “Modeling and Analysis of Interleaved Dual Boost Converter,” Proc. of IEEE ISIE, pp. 718-722, June. 2001.
[38]C. S. Babu, M. J. Veerachary, “Predictive Controller for Interleaved Boost Converter,” Proc. of IEEE ISIE, pp. 577-581, June. 2005.
[39]李銘傳 ,交錯式昇壓型功因修正電路研製,國立國立中正大學電機工程所碩士論文,2006年。
[40]J. Luo, M. K. Jeoh, and H. C. Huang, “A New Continuous Conduction Mode PFC IC with Average Current Mode Control,” IEEE Power Electronics and Drive Systems, pp. 1110-1114, 2003.
[41]T. Ishii and Y. Mizutani, “Power Factor Correction Using Interleaving Technique for Critical-Mode Switching Converter,” Proc. of IEEE Power Electronics Specialists Conference, pp. 905-910, 1998.
[42]呂鑑哲,800 W交錯式昇壓型功率因數修正器研製,國立臺灣科技大學電子工程系研究所碩士論文,2008年。

無法下載圖示 全文公開日期 2017/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE