簡易檢索 / 詳目顯示

研究生: 蔡仁傑
Ren-Jie Cai
論文名稱: 具有不同圓蓋尺寸之有限長圓柱在垂直流場的實驗觀測
Experimental observations of a finite-length cylinder with a cap of different sizes in a vertical flow
指導教授: 林怡均
Yi-Jiun Lin
口試委員: 田維欣
Wei-Hsin Tien
溫琮毅
Tsrong-Yi Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 192
中文關鍵詞: 有限長圓柱質點影像速度儀質點追蹤速度儀自由端下洗流渦旋逸放尾流結構
外文關鍵詞: Finite-length circular cylinder, Particle Image Velocimetry, Particle Tracking Velocimetry, Free end, Downwash flow, Vortex shedding, Wake structure
相關次數: 點閱:216下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用閉迴路循環垂直式水洞進行實驗, 在壓克力材質的水洞測試段內安裝一圓柱, 觀察單一圓柱自由端嵌入4個不同直徑尺寸的圓蓋在3個不同流速中的流場特性, 進行12組( 4 × 3 ) 的實驗觀測。4個不同直徑大小的圓蓋分別為1D (6.4 mm)、2D (12.8 mm)、3D (19.2 mm) 和4D (25.6 mm), 圓蓋厚度為3.2 mm。實驗的3個雷諾數 (ReD) 分別為250 ( V∞ = 40 mm/s )、560 ( V∞ = 87 mm/s ) 和1080 ( V∞ = 170 mm/s )。單一圓柱的長度 (L) 為150 mm, 直徑 (D) 為6.4 mm, 固定的展弦比 (AR) 為23.44。本實驗採用流場可視化觀察流場分布的結構, 再藉由質點影像速度儀 (Particle Image Velocimetry, PIV) 進行速度的估算, 以及利用質點追蹤速度儀 (Particle Tracking Velocimetry, PTV) 與質點影像速度儀的結果相互比較, 流場觀測面分為縱截面 (X-Y 平面) 和橫截面 (Y-Z 平面)。具有不同直徑尺寸之圓蓋圓柱的縱截面 (X-Y 平面) 流場可視化結果皆顯示, 當流體流經具有圓蓋之自由端時, 將在圓蓋頂部加速, 並在圓蓋後方形成下洗流。具有1D、2D 和3D 圓蓋圓柱的縱截面 (X-Y 平面)之流場可視化結果在近尾流域呈現再循環區(recirculation zone), 其中接近圓蓋部分的流速較遠離圓蓋部分的流速來的快, 具有4D 圓蓋圓柱之流場可視化結果於低雷諾數時, 則是在近尾流域位於 (X/D, Y/D) = (-1.3, -3) 的位置出現源點, 其源點會隨著雷諾數的增加而逐漸消失, 導致具有4D 圓蓋圓柱的低雷諾數之流場結構不同於其他三個圓蓋圓柱之流場。PIV瞬時流場在橫截面 (Y-Z平面) 上的分析結果顯示, 當X軸方向靠近圓蓋的距離 (X/D = -1.5), 可以觀察到具有1D 和2D 圓蓋圓柱之流場的近尾流域內呈現一對反向渦旋, 具有3D 和4D 圓蓋圓柱的流場, 則是開始呈現渦旋逸放。PIV和PTV 瞬時流場在橫截面 (Y-Z 平面) 上分析呈現PTV的剪切層相比PIV較符合流場可視化所觀測到的結果。利用PIV 分析4種圓蓋圓柱之流場於雷諾數250在縱截面(X-Y 平面)上的紊流強度, 其結果顯示具有4D 圓蓋圓柱之流場, 其圓蓋後方X/D = 1 ∼ −1.2, Y/D = −3.5 ∼ −10的區域, 出現一明顯的紊流擾動區, 使其流場結構不同於其他圓蓋圓柱的流場。PIV平均速度的渦度場在橫截面 (Y-Z 平面) 上X軸靠近圓蓋之距離 (X/D = -1.5) 的結果呈現隨著圓蓋直徑增大, 渦度影響範圍出現擴大的現象。比較4種圓蓋圓柱之平均速度的渦度場, 結果顯示具有4D 圓蓋圓柱之流場的渦度為最弱。


    The study investigates the flow characteristics of the flow field by flow past a finite-length cylinder with a cap of different sizes. The finite-length cylinder with the aspect ratio (AR) is 23.44, the length (L) is 150 mm and the diameter (D) is 6.4 mm, which is mounted in the test section of a vertical closed-loop water tunnel. The thickness of each cap is 3.2 mm and the diameters of the caps are 1D (6.4 mm), 2D (12.8 mm), 3D (19.2 mm) and 4D (25.6 mm). There are 12 (4×3) experiments which were conducted with Reynolds numbers as 250 ( V∞ = 40 mm/s ), 560 ( V∞ = 87 mm/s ) and 1080 ( V∞ = 170 mm/s ). The flow structure of the experiments is observed and analyzed by flow visualization, Particle Image Velocimetry and Particle Tracking Velocimetry. The flow field is observed in two main planes, one is the transverse-section plane (X-Y plane), and another is the cross-section plane (Y-Z plane). The results of the flow visualization on X-Y plane show that the flow is accelerated at the free end and becomes the downwash behind the cap. In the 1D, 2D and 3D cases, the recirculation zone is formed in the near wake region. In the 4D case, there is a source point which appears in the near wake region at ReD = 250 and it disappears as Reynolds number increases. The PIV instantaneous velocity fields on Y-Z plane (X/D = -1.5) show that the 1D and 2D cases have a pair of the counter vortex in the near wake region, but the 3D and 4D cases begin to present the vortex shedding. The PTV instantaneous velocity fields are more close to the original image results to observe the shear layer than the PIV results. The turbulence intensity fields are analyzed by PIV on X-Y plane. The results of turbulence intensity show that the fluctuation region appears behind the cap at X/D = 1 ∼ −1.2, Y/D = −3.5 ∼ −10 in the 4D case. The time-averaged vorticity fields are analyzed by PIV on Y-Z plane. Comparing the four caps diameter, the effect region of the vorticity expands as the diameter of the cap increases and the vorticity of the 4D case is the weakest.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 緒論1 1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 自由端、圓柱結構和展弦比(Aspect Ratio, AR) . . . . . . . . 2 1.2.2 雷諾數(Reynolds number, ReD ) . . . . . . . . . . . . . . . 5 1.2.3 史卓荷數(Strouhal number, St) . . . . . . . . . . . . . . . . 6 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 實驗設備及量測方法9 2.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 垂直式水洞. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 有限長圓柱及圓蓋. . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 實驗儀器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 攝影設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 DPSS綠光雷射. . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 質點特性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 實驗觀測及分析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 流場可視化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 質點影像速度儀(Particle Image Velocimetry) . . . . . . . . . 12 2.4.3 質點追蹤速度儀(Particle Tracking Velocimetry) . . . . . . . 14 3 流體流經具有不同直徑圓蓋之有限長圓柱實驗結果17 3.1 流場可視化結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 X-Y平面可視化結果. . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Y-Z平面可視化結果. . . . . . . . . . . . . . . . . . . . . . . 19 3.2 瞬時流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 PIV和PTV 速度場結果. . . . . . . . . . . . . . . . . . . . 20 3.2.2 PIV頻譜分析. . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 平均流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 PIV速度場結果. . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 PIV紊流強度結果(turbulent intensity) . . . . . . . . . . . . 30 3.4 平均速度的渦度場(vorticity) . . . . . . . . . . . . . . . . . . . . . . 33 4 結論與建議37 4.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 建議與未來工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 參考文獻41 作者簡歷167

    [1] 張格綸(2016). ”實驗研究流經壁掛式有限長圓柱具不同尺寸圓蓋的流場,” 國立台
    灣科技大學碩士論文。
    [2] Park, C. W., Lee, S. J., (2000). ”Free End Effects on the near Wake Flow
    Structure behind a Finite Circular Cylinder,” Journal of Wind Engineering
    and Industrial Aerodynamic., 88, pp. 231-246.
    [3] Rostamy, N., Sumner, D., Bergstrom, D. J., Bugg, J. D., (2012). ”Local Flow
    Field of a Surface-Mounted Finite Circular Cylinder,” Journal of Fluids and
    Structures., 34, pp. 105-122.
    [4] Sumner, D., Heseltine, J. L., Dansereau, O. J. P., (2004). ”Wake structure of
    a finite circular cylinder of small aspect ratio,” Experiments in Fluids., 37,
    pp. 720-730.
    [5] Adaramola, M. S., Akinlade, O. G., Sumner, D., Bergstrom, D. J., Schen-
    stead, A. J., (2006). ”Turbulent Wake of a Finite Circular Cylinder of Small
    Aspect Ratio,” Journal of Fluids and Structures, 22, pp. 919-928.
    [6] Sumner, D., (2013). ”Flow above the Free End of a Surface-Mounted Finite-
    Height Circular Cylinder: A Review,” Journal of Fluids and Structures, 43,
    pp. 41-63.
    [7] Schneiders, J. F. G., Caridi, G. C. A., Sciacchitano, A., Scarano, F., (2016).
    ”Large-scale volumetric pressure from tomographic PTV with HFSB tracers,”
    Experiments in Fluids, 57:164.
    [8] Park, C. W., Lee, S. J., (2004). ”Effects of free-end corner shape on flow
    structure around a finite cylinder,” Journal of Fluids and Structures., 19, pp.
    141-158.
    [9] Lienhard, J. H., (1966). ”Synopsis of lift, drag, and vortex frequency data
    for rigid circular cylinders,” Technical Extension Service, Washington State
    University.
    [10] White, F. M., (2006). Viscous fluid flow (Vol. 3), New York: McGraw-Hill.
    [11] Yagmur, S., Dogan, S., Aksoy, M. H., Goktepeli, I., Ozgoren, M., (2017).
    ”Comparison of flow characteristics around an equilateral triangular cylin-
    der via PIV and Large Eddy Simulation methods,” Flow Measurement and
    Instrumentation, 55, pp. 23-26.
    [12] Flagan, R. C., Seinfeid, J. H., (2013). ”Fundamentals of air pollution engi-
    neering,” Courier Corporation.
    [13] 楊盛翔(2011). ”不同動量通量比的水平圓柱管噴流在重直橫流中交互作用之實驗
    研究,” 國立台灣科技大學碩士論文。
    [14] 蘭真(2005). ”偏折噴流之剪流層渦漩動力機制與紊流特性,” 國立台灣科技大學博
    士論文。
    [15] J´ozsa, J., Sokoray-Varga, B., (2008). ” Particle tracking velocimetry (PTV)
    and its application to analyse free surface flows in laboratory scale models,”
    Periodica Polytechnica Civil Engineering, 52(2), pp. 63-71.
    [16] Lei, Y. C., Tien, W. H., Duncan, J., Paul, M., Pomchaut, N., Mouton, C.,
    et al., (2012). ”A vision-based hybrid particle tracking velocimetry (PTV)
    technique using a modified cascade correlation peak-finding method,” Exper-
    iments in Fluids, 53, pp. 1251-1268.
    [17] Bearman P. W., (1997). ”Near wake flows,” Journal of Fluids and Structures,
    69-71, pp. 125-127.
    [18] Stevanus, W., (2013). ”不可壓縮垂直流經過有限長水平圓柱管的實驗研究,” 國
    立台灣科技大學碩士論文。
    [19] Sumner, D., Rostamy, N., Bergstrom, D. J., Bugg, J. D., (2013). ”Influence
    of aspect ratio on the flow above the free end of a surface-mounted finite
    cylinder,” Journal of Fluids and Structures, 43, pp. 41-63.
    [20] 蔡承運(2018). ”數值模擬具有不同圓頂蓋尺寸的有限長圓柱之周邊流場,” 國立台
    灣科技大學碩士論文。
    [21] 張智超(2009). ”設置垂直式水洞圓管噴流實驗,” 國立台灣科技大學碩士論文。
    [22] 藍章榮(2014). ”垂直不可壓縮流經過頂端具有圓蓋之有限長水平圓柱的實驗研
    究,” 國立台灣科技大學碩士論文。
    [23] Abedin, Z., Islam, Md. Q., Rizia, M., Enam, H. M. K., (2017). ”A Review on
    the Study of Wind Loads on Multiple Cylinders with Effects of Turbulence
    and Surface Roughness,” American Journal of Mechanical Engineering, 5(3),
    pp. 87-90.

    QR CODE