簡易檢索 / 詳目顯示

研究生: 楊昌昊
Chang-hao Yang
論文名稱: 新型多模注入鎖定除頻器與串疊型電壓控制振盪器之設計
Design of Multi-Modulus Injection-Locked Frequency Divider and Cascode Voltage-Controlled-Oscillator
指導教授: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
口試委員: 黃忠偉
Jong-Woei Whang
黃柏仁
Bohr-Ran Huang
陳凰美
Hwan-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 110
中文關鍵詞: 注入鎖定除頻器串疊型電壓控制振盪器
外文關鍵詞: Multi-Modulus Injection-Locked Frequency Divider, Cascode Voltage-Controlled-Oscillator
相關次數: 點閱:245下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要描述壓控振盪器與注入鎖定除頻器電路,其分別為“增強Q型電路之低功秏串疊電感電容的12 GHz壓控振盪器”、“雙頻段之多模注入鎖定除頻器”、 “耦合型三級環形振盪器之直接注入鎖定除三除頻器”及“耦合型三級環形振盪器之差模注入鎖定除三除頻器”。前兩電路皆採用台積電所提供之零點一八微米互補式金氧半製程所製造,後兩電路皆採用台積電所提供之零點三五微米互補式金氧半製程所製造。

    增強Q型電路之低功秏串疊電感電容的12 GHz壓控振盪器使用TSMC 0.18-μm CMOS 1P6M製程,實現一組壓控振盪器電路,振盪頻率為12 GHz,相位雜訊在1 MHz的偏移頻率下為-112.811 dBc/Hz,而可調範圍則是使用直流電壓之改變來達到頻率可調的機制,約757.75 MHz,本電路之總消耗為5.625 mW,所佔之面積約為0.413 x 0.58 mm2。
    雙頻段多模注入鎖定除三除頻器使用TSMC 0.18-μm CMOS 1P6M製程,實現一組雙頻段除頻器電路,振盪頻率為3.5 GHz、5.5 GHz,總鎖頻範圍為0.8 GHz、1.39 GHz ,而可調範圍則是使用直流電壓之改變來達到頻率可調的機制,約5~10 %,電路總消耗為6.8 mW,所佔之面積約為0.726 x 0.796 mm2。
    耦合型三級環形振盪器電路分別採用兩種注入方式來達成除三除頻器電路架構;直
    接注入鎖定模式中的電路於注入訊號為0 dBm時,其鎖定除頻範圍約300 MHz,而可調範圍則是使用直流電壓之改變來達到頻率可調的機制,約550 MHz,本電路之總消耗為0.98~37.2 mW,總鎖頻範圍是1.8 GHz;在差模注入鎖定模式中的電路於注入訊號為-5 dBm時,其鎖定除頻範圍約300 MHz,而可調範圍約565 MHz,本電路之總消耗為1.032~49 mW,總鎖頻範圍是1.93 GHz;電路面積為0.84 x 0.455 mm2。


    We have proposed and fabricated a fully integrated cascode CMOS LC VCO using Q-enhancement circuit. Using fully symmetrical cascode coupling scheme, the proposed VCO has 757.75 MHz tuning range and 5.625 mW power consumption. Fabricated in 0.18 μm CMOS technology, the LC VCO oscillates in an 12 GHz band. The measured phase noise of the VCO is -112.81 dBc/Hz at 1 MHz offset. The FOM of the VCO is -187.47 dBc/Hz. The die area is 0.413 x 0.58 mm2.
    A dual-band CMOS multi-modulus LC-tank ILFD circuit has been successfully implemented in the TSMC 0.18-μm CMOS process. The proposed circuit can be used as a first-harmonic ILO, divide-by-2, -3, -4 and -5 ILFD. When the ILFD is biased at , , and . The total locking range in the divide-by-3 mode can be from 9.6 GHz to 10.4 GHz, about 0.8GHz. When , , and , the total locking range can be from 15.51 GHz to 16.9 GHz, about 1.39 GHz. The phase noise of the locked ILFD at low frequency offset from the oscillation frequency is lower than the injection source by 9.5 dB. The die area is 0.726 × 0.796 mm2.
    Two differential ring oscillator ILFD circuits have been successfully implemented in the TSMC 0.35-μm CMOS 2P4M technology. In the direct injection ILFD, the total locking range in the divide-by-3 mode can be from 1.2 GHz to 3.0 GHz, about 1.8 GHz. When in the differential injection ILFD, the total locking range can be from 0.38GHz to 2.31 GHz, about 1.93 GHz. The phase noise of the locked ILFD at low frequency offset from the oscillation frequency is lower than the injection source by 10.989 dB and 8.716 dB. The die area is 0.84 × 0.455 mm2.

    中文摘要 I Abstract III 誌謝 IV Contents V List of Figures VII List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Overview of VCO 5 2.1 Introduction 5 2.2 Principle of Oscillation 6 2.2.1 Feedback Model 7 2.2.2 One-Port Oscillator Model 8 2.3 Classification of Oscillators 11 2.4 LC-Tank Oscillators 13 2.5 Design Concepts of Voltage-Controlled Oscillators 15 2.5.1 Phase Noise in Oscillators 16 2.5.2 Tail Current Source 22 2.5.3 Pulling in Oscillators 24 2.5.4 VCO Characteristic Parameters 25 2.6 Parallel RLC Tank 28 2.6.1 Quality Factor 28 2.7 Inductors and Transformers 30 2.7.1 Inductors 31 2.7.2 Transformers 37 2.8 Varator Design 44 2.8.1 p-n reverse biased diode 44 2.8.2 MOS varactor 45 Chapter 3 A 12GHz Low-Power Cascode LC-VCO with Q-enhancement Circuit 49 3.1 Introduction 49 3.2 Circuit Design 50 3.3 Measurement Results 53 3.4 Conclusion 56 Chapter 4 Dual-Band CMOS Multi-Modulus Injection-Locked Frequency Divider 57 4.1 Introduction 57 4.2 Circuit Design 58 4.3 Measurement Results 61 4.4 Conclusion 74 Chapter 5 ILFD Based on Differential Ring Oscillator 76 5.1 Introduction 76 5.2 Principle of Injection Locked Divider 77 5.2.1 Locking Range 79 5.3 The Design of Ring Oscillator ILFD 81 5.3.1 Proposed Ring Oscillator Circuit Design 81 5.3.2 Proposed Ring Oscillator Based on ILFD Circuit Design 84 5.4 Measurement Results 87 5.4.1 Measurement Results in Direct Injection ILFD 87 5.4.2 Measurement Results in Differential Injection ILFD 90 5.5 Conclusion 93 Chapter 6 Conclusion 94 References 96

    [1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
    [2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [4] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [5] J.J. Rael, et al., “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [6] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [7] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [8] A. Hajimiri, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [9] A. Hajimiri, et al., “Design Issues in CMOS Differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
    [10] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [11] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [12] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997
    [13] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [14] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [15] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [16] M. W. Geen, G. J. Green, R.G. Arnold, J. A. Jenkins, and R. H. Jansen, “Miniature multilayer spiral inductors for GaAs MMICs,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 303-306, 22-25 Oct. 1989
    [17] B. D. Muer, M. Borremans, M. Steyaert, and G. L. Puma, “A 2-GHz low-phase noise integrated LC-VCO set with flicker-noise upconvertion minimization,” IEEE Journal of Solid-State Circuits, vol. 7, no. 35, pp. 1034–1038, July 2000.
    [18] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [19] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [20] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446-448, Oct 2003.
    [21] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 269-272, June 2004.
    [22] Nam-Jin and Sang-Gug Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 733-735, Nov 2005.
    [23] M. Stmayer, J. Cabanillas, and G. M. Rebeiz, “A low-noise transformer-based 1.7 GHz CMOS VCO,” Proc. IEEE Solid-State Circuits Conf., vol. 2, 2002, pp. 224-484.
    [24] WU. C.Y and HSIAO, S.Y, “The design of a 3V 900MHz CMOS bandpass amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 2, pp. 159-168, 1997.
    [25] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 1998.
    [26] P. Kinget, "Integrated GHz voltage controlled oscillators," in Analog Circuit Design, W. Sansen, J. Huijsing, and R. van de Plassche, Eds. Norwell, MA: Kluwer, 1999
    [27] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee and S.-H. Lee, “A CMOS dual-band voltage controlled oscillator,” in 2006 IEEE Asia Pacific Conf. Circuits and Systems, pp.514-517.
    [28] S.-M. Yim and K. K. O, “Switched resonators and its applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 1, pp.74-81, Jan. 2006.
    [29] Z.-B. Li and K. K. O, “A low phase noise and low power multi-band CMOS voltage controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296-1302, June 2005.
    [30] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [31] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
    [32] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig., San Francisco, CA, pp. 600-601, Feb. 2006.
    [33] K. Yamamoto and M. Fujishima, “55 GHz CMOS frequency divider with 3.2 GHz locking range,” in Proc. Eur. Solid-State Circuits Conf., Leuven, Belgium, pp. 135-138, Sep. 2004.
    [34] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
    [35] P. Wambacq and W. Sansen, “Distortion Analysis of Analog Integrated Circuits, ” Dor drecht: Kluwer, 1998.
    [36] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
    [37] S.-L. Jang, W. Yeh and C.-F. Lee, “A low power CMOS divide-by-3 LC-tank injection locked frequency divider,” Microwave and Optical Technology Lett., Vol. 50, no. 1, pp.259-262, Jan. 2008.
    [38] S.-L. Jang, C.-F. Lee and W.-H. Yeh, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., Feb. 2007
    [39] M. Motoyoshi and M. Fujishima, “43uW 6GHz CMOS divide-by-3 frequency divider based on three-phase harmonic injection locking,” IEEE ASSCC., pp.183-186, 2006.
    [40] W.-Z. Chen and C.-L. Kuo, “18GHz and 7GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 89-92, Sep. 2002.
    [41] J. Craninckx and M. Steyaert, “A 1.75 GHz/3 V dual-modulus divide- by-128/129 prescaler in 0.7-μm CMOS,” Proc. ESSCIRC, Sept. 1995, pp. 254–257.
    [42] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, Mar. 1996, pp. 456–463.
    [43] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” Symp. VLSI Circuits Dig. Tech. Papers, June 2003, pp. 259–262.
    [44] H.R. Rategh, T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, June 1999, pp. 813–821.
    [45] H.-D.Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” in Proc. Eur. Solid-State Circuits Conf., Sept. 2002, pp. 823–826.
    [46] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 5, May 2000, pp. 741–744.
    [47] H.R. Rategh, T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, June 1999, pp. 813–821.
    [48] Hui Wu, A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers, Feb. 2001, pp. 412-413.
    [49] R.J. Betancourt-Zamora, S. Verma, T.H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” Symposium on VLSI Circuits, 2001, pp. 47-50.
    [50] P. Kinget, R. Melville, D. Long, V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, July 2002, pp. 845-851.
    [51] W.-Z. Chen, C.-L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS technology” Proc. ESSCIRC, September 2002, pp. 89-92.
    [52] Hui Wu, “Signal generation and processing in high-frequency high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [53] R. Adler, “A study of locking phenomena in oscillators.” Proc. IEEE, vol. 61, no.10, pp.1380-1385, Oct. 1973.
    [54] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
    [55] K. Yamamoto, T. Norimatsu and M. Fujishima, “High-speed and wide-tuning-range LC frequency dividers,” IEEE ISCAS, May 2004, pp. 361-364.
    [56] A. Tedesco, A. Bonfanti, L. Panseri, and A. Lacaita, “A 11-15GHz CMOS 2 Frequency divider for broad-band I/Q generation,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, Nov. 2005, pp. 724-726.

    QR CODE