簡易檢索 / 詳目顯示

研究生: 黃孟哲
Meng-Che Huang
論文名稱: 銅基雙金屬硫氧化物經熱處理後其抗菌性能之研究
Cu-based bimetal oxysulfide for antibacterial application after heat treatment
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
郭永綱
Yung-Kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 141
中文關鍵詞: 雙金屬硫氧化物抗菌煆燒
外文關鍵詞: Bimetal oxysulfide, antibacterial, calcined
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用低溫水熱法製備銅基雙金屬硫氧化物,並將材料置於高溫爐中煆燒不同溫度後,以X光繞射儀(XRD)分析材料的結構及結晶性;場發射掃描式電子顯微鏡(FESEM)觀察材料的表面形態;能量分散式光譜儀(EDS)半定量分析材料元素組成與銅、錳、鎳、氧、硫之含量變化。在光學性質量測方面,採用紫外光/可見光吸收光譜儀(UV-Vis spectrometer)量測材料經熱處理後吸收率與能隙的變化。
在抗菌試驗上,菌種選用大腸桿菌(E.coli)與金黃色葡萄球菌(S.aureus),在起始菌液濃度為1 × 108 CFU/mL的情形下,分別於暗室及20瓦LED光源下進行抗菌試驗,發現多數材料之抗菌能力都隨著煆燒溫度增加而變強,其中又以CuMnOS的效果最佳,只需經130度煆燒一小時後,無論在暗室或亮室下,殺菌率均可達到99.99%以上,說明了透過摻雜和熱處理可以改善其抗菌性能,且可以證實相同觸媒材料在經過相同熱處理後,於照光下的抗菌效果比暗室下更為突出。


In this research, Cu-based bimetal oxysulfides were prepared by low temperature hydrothermal synthesis method. The as-prepared precipitates were calcined at different temperatures in a box furnace. The structure and crystallinity of oxysulfides were characterized by X-ray diffractometry (XRD), the morphology by field-emission scanning electron microscopy (FE-SEM), the compositions on Cu, Mn, Ni, O, and S by energy-dispersive spectrometer (EDS) equipped on electron microscope, and the optical absorbtion property by the ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS).
For the antibacterial test, we selected Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as the testing strains. The initial bacterial concentration of 1 × 108 CFU / mL was prepared for antibacterial test in a dark room and in the 20-watt LED light condition. We found that the antibacterial performance became better when the oxysulfides were calcined at higher temperature. The data showed that CuMnOS had performed the excellent antibacterial activity up 99.99% even just calcined at 130 oC for one hour, no matter in the dark or under the LED illumination. Therefore, Cu-based oxysulfides can improve its antibacterial effect by doping and heat treatment. These Cu-based catalysts after the same heat treatment showed much better ability in the light illumination condition to sterilize bacteria than in the dark.

摘要 ABSTRACT 致謝 目錄 表目錄 圖目錄 第1章、 緒論 1-1 前言 1-2 奈米材料簡介 1-3 光觸媒簡介 1-4 抗菌材料 1-5 研究動機與目的 第2章、 理論基礎與文獻回顧 2-1 硫化銅簡介 2-1-1 硫化銅性質 2-1-2 硫化銅製備方法 2-2 細菌構造簡介及分類 2-2-1 細菌之細胞壁 2-2-2 細菌分類 2-3 抗菌機制 2-3-1 金屬抗菌 2-3-2 光觸媒抗菌 2-3-3 暗室下抗菌 2-3-4 銅基化合物抗菌 2-4 摻雜改善抗菌效率 第3章、 實驗方法與步驟 3-1 實驗藥品 3-2 實驗設備 3-3實驗流程 3-3-1 粉體製備 3-3-2 煆燒處理 3-3-3 抗菌試驗 3-4 分析儀器 3-4-1 表面分析 3-4-2 結構分析 3-4-3 光學分析 第4章、 結果與討論 4-1 材料結構鑑定 4-1-1 X-Ray Diffraction (XRD)繞射分析 4-1-2 高解析度場發射掃描式電子顯微鏡(SEM)表面型態觀察 4-1-3 紫外-可見光/近紅外光分析儀 (UV-VIS Spectroscopy) 4-2 抗菌性之探討 4-2-1 CuMnOS、CuNiOS金屬固溶粉體抗菌測試 4-2-2 CuOS、CuS、CuO粉體之抗菌試驗 第5章、 結論 第6章、 參考文獻

[1] 川合知二原著、林振華編譯、黃廷合校閱,“奈米技術入門”,全華科技圖書股份有限公司.
[2]Akri Fujishima, and Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238 (1972) 37.
[3]Chunyan Wu, Guofang Zhou, Dun Mao, Zihan Zhang, Yiliang Wu, Wenjian Wang, Linbao Luo, Li Wang, Yongqiang Yu, Jigang Hu, Zhifeng Zhum, Yan Zhang, and Jiasheng Jie, CTAB Assisted Synthesis of CuS Microcrystals : Synthesis, Mechanism, and Electrical Properties. Journal of Macterials Science & Technology, 29 (2013) 1047-1052.
[4]Xue-ying Wang, Zhen Fang, and Xiu Lin, Copper sulfide nanotubes : facile, large-scale synthesis, and application in photodegradation. Journal of Nanoparticle Research, 11 (2009) 731-736
[5]Xiang Meng, Guohui Tian, Yajie Chen, Rutao Zhai, Juan Zhou, Yunhan Shi, Xinrui Cao, Wei Zhou, and Honggang Fu, Hierarchical CuS hollow nanospheres and their structure- enhanced visible light photocatalytic properties. CrystEngComm, 15 (2013) 5144-5149.
[6]Prashant Kumar, Meenakshi Gusain, and Nagarajan, Synthesis of Cu1.8S and CuS from Copper-Thiourea Containing Precursors; Anionic (Cl-, NO3-, SO42-) Influence on the Product Stoichiometry. Inoganic Chemistry, 50 (2011) 3065-3070.
[7]Yu-Biao, Ling Chen, and Li-Ming Wu, Water-Induced Thermolytic Formation of Homogeneous Core-Shell CuS Microspheres and Their Shape Retention on Desulfurization. Crystal Growth & Design, 8 (2008) 2736-2740
[8]Poulomi Roy, and Suneel Kumar Srivastava, Low-tempearture synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 61 (2007) 1693-1697.
[9]Guozhen Shen, Di Chen, Kaibin Tang, Xianming Liu, Liying Huang, and Yitai Qian, General synthesis of metal sulfides nanocrystallines via a simple polyol route. Journal Of Solid State Chemistry, 173 (2003) 232-235.
[10]Xinbo Wang, Changqi Xu, and Zhicheng Zhang, Synthesis of CuS nanorods by con-step reaction. Materials letters, 60 (2006) 345-348.
[11]Chonghai Deng, Xinqing Ge, Hanmei Hu, Li Yao, Chengliang Han, and Difang Zhao, Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrysEngComm, 16 (2014) 2738-2745.
[12]徐明達,“細菌的世界” 二魚文化事業股份有限公司,(2012)。
[13]Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Cheng, Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. American Chemical Society, 6 (2012) 5164-5173.
[14]Danielle McShan, Paresh C. Ray, and Hongtao Yu, Molecular toxicity mechanism of nanosilver. Journal Of Food and Drug Analysis, 22 (2014) 116-127.
[15]Eriberto Bressan, Letizia Ferroni, Chiara Gardin, Chiara Rigo, Michele Stocchero, Vincenzo Vindigni, Warren Carins, and Barbara Zavan, Silver Nanoparticles and Mitochondrial Interaction. International Journal of Dentistry, 2013 (2013) 312747-312754.
[16]P. V. AshaRani, Grace Low Kah Mun, Manoor Prakash Hande, and Suresh Vallyaveettil, Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. ACS Nano, 3 (2009) 279-290.
[17]S. Sudheer Khan, Amitava Mukherjee, and N. Chandrasekaran, Studies on interaction of colloidal silver nanoparticles (SNPS) with five different bacterial species. Colloids and Surfaces B: Biointerfaces, 87 (2011) 129-138.
[18]S. Sudheer Khan, P. Srivatsan, N. Vaishnavi, Amitava Mukherjee, and N. Chandrasekaran, Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics. Journal of Hazardous Materials, 192 (2011) 299-306.
[19] Clément Levard, Sumit Mitra, Tiffany Yang, Adam D. Jew, Appala Raju Badireddy, Gregory V. Lowry, and Gordon E. Brown, Jr, Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. coli. Environmental Science & Technology, 47 (2013) 5738-5745.
[20]Maqusood Ahamed, Michael Karns, Michael Goodson, John Rowe, Saber M. Hussain, John J. Schlager, and Yiling Hong, DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, 233 (2008) 404-140.
[21]Michael R. Gunther, Phillip M. Hanna, Ronald P. Mason, and Myron S. Cohen, Hydroxyl Radical Formation from Cuprous Ion and Hydrogen Peroxide: Aspin-Trapping Study. Archives of Biochemistry and Biophysics, 316 (1995) 515-522.
[22]Lee Macomber, Christopher Rensing, and James A. Irmlay, Intracellur Copper Does Not Catalyze the Formation of Oxidative DNA Damage in Escherichia coli. Journal of Bacteriology, 189 (2007) 1616-1626.
[23]Lee Macomber, and James A. Imlay, The iron-sulfur cluster of dehydratases are primary intracellular targets of copper toxicity. PNAS, 106 (2009) 8344-8349.
[24]Yoshinor Ohsumi, Katsuhiko Kitamoto, and Yasuhiro Anraku, Changes Induced in the Permeability Barrier of the Yeast Plasma Membrane by Cupric Ion. Journal of Bacteriology, 170 (1988) 2676-2682.
[25]Muhammad Raffi, Saba Mehrwan, Tariq Mahmood Bhatti, Javed Iqbal Akhter, Abdul Hameed, Wasim Yawar, and M. Masood ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60 (2010) 75-80.
[26]V. Lakshmi Prasanna, and Rajagopalan Vijayaraghavan, Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Reactive Oxygen Species Even in the Dark. Langmuir, 31 (2015) 9155-9162.
[27]Hiroki Tamura, Noriaki Katayama, and Ryusaburo Furuichi, Modeling of Ion-Exchange Reaction on Metal Oxides with the Frumkin Isotherm. 1.Acid-Base and Charge Characteristics of MnO2, TiO2, Fe3O4, and Al2O3 Surfaces and Adsorption Affinity of Alkali Metal Ions. Environmental Science & Technology, 30 (1996) 1198-1204.
[28]R. Sathyamoorthy, and K. Mageshwari, Synthesis of hierarchical CuO microspheres: Photocatalytic and antibacterial activities. Physica E, 47 (2013) 157-161.
[29]Kayano Sunada, Masafumi Minoshima, and Kazuhito Hashimoto, Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds. Journal of Hazardous Materials, 235-236 (2012) 265-270.
[30]K. Ravichandran, K. Karthika, B. Sakthivel, N. Jabena Begum, S. Snega, K. Swaminathan, and V. Senthamilselvi, Tuning the combined magnetic antibacterial properties of ZnO Nanopowders through Mn doping for biomedical applications. Journal of Magnetism and magnetic Materials, 358-359 (2014) 50-55.
[31]Jirapat Ananpattarachai, Yuphada Boonto, and Puangrat Kajitvichy anukul, Visible light photocatalytic antibacterial of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environmental Science and Pollution Research, 23 (2016) 4111-41119.
[32]S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, J. Alloys Compd. 462 (2008) 335-339.
[33]S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34 (2012) 1946-1953.
[34]Yixuan Zhou, Yongpeng Lei, Dingsheng Wang, Chen Chen, Qing Peng, and Yadong Li, Ultra-thin Cu2S nanosheets: effective cocatalyst for photocatalytic hydrogen production. Chemical Communications, 51 (2015) 13305-13308.
[35]A. E. POP, V. Popescu, M. Danila, and M. N. Batin, Oprical Properties of CuxS nano-powder. Chalcogenide Letter, 8 (2011) 363-370.
[36]M. Senthilkumar, and S. Moorthy Babu, Crystal Structure Controlled Synthesis and Characterization of Copper Sulfide Nanoparticles. Physical chemistry, 1731 (2015) 050131-05131.
[37]Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, and Y. P. Chen, Electronic structures of Cu2O, Cu4O3, and CuO: A joint experimental and theoretical study. Physical review, 94 (2016) 245418.
[38]Nan Jiang, Qing Tang, Meili Sheng, Bo You, De-en Jiang, and Yujie Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catalysis Science & Technology, 6 (2016) 1077-1084.
[39]M. A. Gondal, Tawfik A. Saleh, and Q. A. Drmosh, Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Applied Surface Science, 258 (2012) 6982-6986.
[40]Gomaa A.M. Ali, Mashitah M. Yusoff, Essam R. Shaaban, and Kwok Feng Chong, High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceramics International, 43 (2017) 8440-8448.
[41]Sheng-Yao Hu, Yueh-Chien Lee, and Bo-Jhih Chen, Characterization of calcined CuInS2 nanocrystals prepared by microwave-assisted synthesis. Journal of Alloys and Compounds, 690 (2017) 15-20.
[42]Anjali Jain Deotale, and R. V. Nandedkar, Correlation between Particle Size, Strain and Band Gap of Iron Oxide Nanoparticles. Materialstoday Proceedings, 3 (2016) 2069-2076.
[43]Gaofei Hu, Tiantian Xu, Xiaoqing Chen, Tony D. James, and Suying Xu, Solar-driven broad spectrum fungicides based on monodispersed Cu7S4 nanorods with strong nearinfrared photothermal efficiency. The Royal Society of Chemistry, 6 (2016) 103930-103937.
[44]Ayekpam Bimolini Devi, Dinesh Singh Moirangthem, Narayan Chandra Talukdar, M. Damatanti Devi, N. Rajen Singh, and Meitram Niraj Luwang, Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chinese Chemical Letters, 25 (2014) 1615-1619.
[45]Yu-Sen E. Lin, Radisav D. Vidic, Janet E. Stout, Christine A. Mccartney, and Victor L. Yu, Inactivation of Mycobacterium Avium by Copper and Silver Ions. Water Research, 32 (1998) 1997-2000.
[46]V. Jankauskaite, A. Lazauskas, J. Baltrusaitis, I. Prosycevas, and M. Andrulevicius, Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. International Journal of Pharmaceutics, 511 (2016) 90-97.

無法下載圖示 全文公開日期 2022/07/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE