簡易檢索 / 詳目顯示

研究生: 賴煜霖
Yu-Lin Lai
論文名稱: 以深度學習的方式對肺部微灌流磁振影像的自動切割
Automatic segmentation of lung for MR perfusion images using deep learning
指導教授: 林益如
Yi-Ru Lin
口試委員: 林益如
Yi-Ru Lin
黃騰毅
Teng-Yi Huang
菜尚岳
Shang-Yueh Tsai
劉益瑞
Yi-Jui Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 56
中文關鍵詞: 深度學習肺部自動化切割
外文關鍵詞: automatic segmentation
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肺部微灌流可以透過動態對比增強 MRI 來做定量評估分析,通常用手動圈
    選肺部的 ROI,在必須排除靜脈組織和大血管的情況下,是這很耗時且非常依賴
    操作員的技術。有研究使用自動切割的方式,通過定義相對血容量或相關係數與
    動脈輸入函數的標準。然而,使用這樣的標準將不會選擇具有流動不足或改變的
    曲線形狀的區域。深度學習是一種新技術,我們這次主要是運用 SegNet 神經網
    路架構,其網路架構是由英國劍橋大學在 2016 年所提出,並且被證明對於各種
    影像的切割和辨識是非常有用的。因此,我們將嘗試使用深度學習來實現肺部的
    自動化切割。
    本研究將藉由四種肺部的微灌流造影資料集,包括打藥前、最大值、平均值、
    最大值對應的時間值等影像,使用 Dice coefficient 和計算肺部微灌流參數來評估
    被切割後的位置,並且嘗試輸入不同的影像組合和改變網路架構的參數值進行訓
    練來達到肺部切割的最佳化。在結論的部分,使用深度學習可以提供強大的自動
    化肺部切割並且此模型可以應用在正常人和病患身上。


    Pulmonary perfusion can be assessed quantitatively by dynamic contrast
    enhanced MRI. ROIs of the lungs are usually manually selected to exclude static tissue
    and large vessels. However, it is time-consuming and operator-dependent. There are
    studies using automatic segmentation by defining criteria of relative blood volume or
    correlation coefficient with arterial input function. However, regions with flow deficit
    or changed curve shape will not be selected using such criteria. Deep learning is a novel
    technique and proved to be very useful for segmentation for various applications.
    Therefore, we try to use deep learning to achieve automatic lung segmentation.
    This study uses four types of data from perfusion imaging, including baseline,
    maximum, mean and time to peak. Dice coefficient and perfusion parameters were used
    to evaluate the segmented ROIs. We have tried different combination of data types to
    train deep learning process. We have also tried to change model’s parameters and
    preprocessing of perfusion data to optimize the automatic lung segmentation. In
    conclusion, deep learning can provide robust segmentation of the lung, and hope that
    can be applied to normal people and patients.

    Abstract i 中文摘要 ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 簡介 1 1.1 肺部微灌流 1 1.2動機 2 1.3 深度學習訓練與預測流程圖 3 1.4 SegNet架構 4 1.4.1 激勵函數 5 1.4.2 卷積層 7 1.4.3 池化層與反池化層 8 1.4.4 Softmax層 10 1.4.5 代價函數 12 1.4.6 梯度下降法與學習率 14 1.4.7 誤差反向傳播 15 第二章 方法與材料 16 2.1 資料來源 16 2.2網路模型之訓練架構 18 2.2.1肺部切割: 模型一 18 2.2.2肺部切割: 模型二 (改變激勵函數) 20 2.2.3優化預測目標 21 2.3模型評估方式 23 2.3.1 Dice係數 23 2.3.2 K-fold 交叉驗證 24 2.4 Perfusion參數計算 25 第三章 實驗結果 26 3.1模型一:肺部切割 26 3.2 肺部切割:模型二 (改變激勵函數) 29 3.3優化預測目標 31 3.4 Perfusion parameters 35 3.5 參數統計 36 3.5.1無去血管PBV統計 36 3.5.2去血管PBV統計 38 3.5.3去血管後處理PBV統計 40 第四章 討論與結論 42 參考文獻 45

    1. Badrinarayanan, V., A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 2017. 39(12): p. 2481-2495.
    2. Chen, L.-C., et al., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 2018. 40(4): p. 834-848.
    3. Cireşan, D., U. Meier, and J. Schmidhuber, Multi-column deep neural networks for image classification. arXiv preprint arXiv:1202.2745, 2012.
    4. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
    5. Hua, K.-L., et al., Computer-aided classification of lung nodules on computed tomography images via deep learning technique. OncoTargets and therapy, 2015. 8.
    6. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
    7. Krizhevsky, A., I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural networks. in Advances in neural information processing systems. 2012.
    8. Long, J., E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.
    9. Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
    10. 楊采玲, 以深度學習法分析大腦磁振影像: 腦腫瘤之自動分區. 2018.
    11. 歐育年, 基於深度學習演算法的全自動心臟影像多層分析系統. 2018.
    12. 沈宗翰, 肺部微灌流磁振影像之全自動影像分析系統. 2007.
    13. Detre, J.A., et al., Perfusion imaging. Magnetic resonance in medicine, 1992. 23(1): p. 37-45.
    14. Fink, C., et al. Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI-initial results. in RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren. 2004. © Georg Thieme Verlag Stuttgart· New York.
    15. Ohno, Y., et al., Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. American Journal of Roentgenology, 2007. 188(1): p. 48-56.
    16. Ng, C.S., et al., Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. American Journal of Roentgenology, 2010. 194(2): p. W134-W140.
    17. Ingrisch, M., et al., Quantitative Pulmonary Perfusion Magnetic Resonance Imaging: Influence of Temporal Resolution and Signal-to-Noise Ratio. Investigative Radiology, 2010. 45(1): p. 7-14.

    無法下載圖示 全文公開日期 2024/07/30 (校內網路)
    全文公開日期 2024/07/30 (校外網路)
    全文公開日期 2024/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE