簡易檢索 / 詳目顯示

研究生: 翁釩宸
Fan-Chen Weng
論文名稱: 基於增強語音命令的適應分層限定時間飽和控制之全向移動機器人的設計與實現
Design and Implementation of Speech Enhancement Based Adaptive Hierarchical Fixed-Time Saturated Control of Omnidirectional Mobile Robot
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
蔡奇謚
Chi-Yi Tsai
吳修明
Hsiu-Ming Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 97
中文關鍵詞: 增強語音命令語音命令特徵萃取多分類支持向量機全向移動機器人適應分層限定時間飽和控制
外文關鍵詞: speech enhancement, speech feature extraction, multiclass support vector machine, omnidirectional mobile robot, adaptive hierarchical fixed-time saturated control
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以實踐人類與機器人之合作互動的前提下,本論文探討基於增強語音命令的適應分層限定時間飽和控制(SEB-AHFTSC)之全向移動機器人(ODMR)。首先,將九個語音命令萃取其特徵並輸入至多類別的支持向量機(Multiclass Support Vector Machine)進行訓練。由於背景噪音時常存在並影響語音命令的辨識,有鑑於此,故設計適當的濾波機制降低背景噪音之不利影響。文中將呈現有無背景噪音之語音命令與是否進行濾波之比較。得益於全向移動機器人能夠同時進行平移與旋轉的特色,使得基於語音命令之控制更加可靠與令人滿意。為達到更快的姿態追蹤能力, 將ODMR分成間接模式及直接模式以設計適應分層限定時間飽和控制(AHFTSC)。為了在限定時間內達成零誤差地追蹤間接輸出(即ODMR之期望姿態),設計具有非線性切換增益(Nonlinear Switching Gains)的適應限定時間虛擬期望姿態(AFTVDP)。為了使得直接輸出(即馬達電流)在限定時間內達成零誤差地追蹤AFTVDP,設計具有非線性切換增益之適應限定時間飽和控制(AFTSC)以完成語音命令的高頻率要求。
    總言之,本論文所提出的「基於增強語音命令的適應分層限定時間飽和控制」包含增強語音命令之辨識與分類、AFTVDP與AFTSC。


    To implement the human and robot collaborations, the speech enhancement based (SEB) adaptive hierarchical fixed-time saturated control (AHFTSC) of omnidirectional mobile robot (ODMR) is designed. From the outset, the features of nine speech commands are extracted and then trained by multiclass support vector machine. Moreover, the background noise is addressed and filtered by the suitable design of filtering mechanism. Comparisons among with or without background noise and filtering are given. Due to advantageous feature of ODMR (i.e., synchronous translation and rotation), the speech command based controls are more reliable and satisfactory. For the faster pose tracking ability, ODMR are divided as indirect and direct modes to design the AHFTSC. To null track the indirect output (desired pose of the ODMR) in fixed time, the adaptive fixed-time virtual desired pose (AFTVDP) with nonlinear switching gains is designed. To make the direct output (motor current) null track the AFTVDP in fixed time, an adaptive fixed-time saturated control (AFTSC) with nonlinear switching gains is employed to execute high frequency motions of speech command. In summary, the proposed SEB-AHFTSC contains speech enhancement’s recognition and classification, AFTVDP, and AFTSC.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 ix 第一章 緒論 1 1-1 研究背景 1 1-2 相關文獻 3 1-3 實驗架構與任務描述 4 第二章 語音命令特徵萃取與分析 8 2.1 語音命令特徵萃取 8 2.2 語音命令特徵分析 13 第三章 適應分層限定時間飽和控制設計 18 3.1 全向移動機器人(ODMR)數學模型 18 3.2 適應分層限定時間飽和控制(AHFTSC) 20 3.3 常數切換增益與非線性切換增益之軌跡追蹤 27 3.3.1 非線性切換增益 28 3.3.2 常數切換增益 45 3.3.3 結果討論 58 第四章 語音命令之辨識與增強 59 4.1 多分類支持向量機 60 4.2 線上濾波之背景噪音消除 62 4.3 基於語音命令控制全向移動機器人(ODMR) 67 4.3.1 實驗結果 67 4.3.2 結果討論 77 4.3.3 全向移動機器人實況資料 78 第五章 結論 80 參考文獻 81

    [1] P. Liu, D. F. Glas, T. Kanda, and H. Ishiguro, “Data-driven HRI: learning social behaviors by example from human–human interaction,” IEEE Trans. Robotics, vol. 32, no. 4, pp. 988-998, Aug. 2016.
    [2] J.-S. Park, G.-J. Jang, J.-H. Kim, and S.-H. Kim, “Acoustic interference cancellation for a voice-driven interface in smart TVs,” IEEE Trans. Consumer Electronics, vol. 59, no. 1, pp. 244-249, Feb. 2013.
    [3] K. Wang, N. An, B. N. Li, Y. Zhang, and L. Li, “Speech emotion recognition using Fourier parameters,” IEEE Trans. Affective Computing, vol. 6, no. 1, pp. 69-75, Jan-Mar 2015.
    [4] M. Sun, Y. Li, J. F. Gemmeke, and X. Zhang, “Speech enhancement under low SNR conditions via noise estimation using sparse and low-rank NMF with Kullback-Leibler divergence,'' IEEE Trans. Audio, Speech, Language Process., vol. 23, no. 7, pp. 1233_1242, Jul. 2015.
    [5] I.-J. Ding and S.-K. Lin, “Performance improvement of Kinect software development kit–constructed speech recognition using a client–server sensor fusion strategy for smart human–computer interface control applications,” IEEE Access, vol. 5, pp. 4154-4162, 2017.
    [6] K. Zinchenko, C.-Y. Wu, and K.-T. Song, “A study on speech recognition control for a surgical robot,” IEEE Trans. Ind. Inform., vol. 14, no. 2, pp. 607-617, Apr. 2017.
    [7] F. C. Ribeiro, R. T. S. Carvalho, P. C. Cortez, V. H. C. D. Albuquerque, and P. P. R. Filho, “Binary neural networks for classification of voice commands from throat microphone,” IEEE Access, vol. 6, pp. 70130-70144, 2018.
    [8] M. Wang, E. Zhang, and Z. Tang, “Speech enhancement for in-vehicle voice control systems using wavelet analysis and blind source separation,” IEEE Access, vol. 6, pp. 9147-9159, 2018.
    [9] S. E. Shepstone, Z. H. Tan, S. H. Jensen, “Audio-based granularity-adapted emotion classification,” IEEE Trans. Affective Computing, vol. 9, no. 2, pp. 176-190, Apr-Jun 2018.
    [10] V. Lostanlen, J. Salamon, M. Cartwright, B. McFee, A. Farnsworth, S. Kelling, and J. P. Bello, “Per-channel energy normalization: Why and how,” IEEE Signal Processing Letters, vol. 26, no. 1, pp. 39-47, Jan. 2019.
    [11] A H. Poorjam, M. A. Little, J. R. Jensen, and M. G. Christensen, “Quality control in remote speech data collection,” IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 2, pp. 236-243, May 2019.
    [12] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of support vector machines to speech recognition,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2348-2355, Aug. 2004
    [13] H. Kim and B. K. Kim, “Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771-4779, Sep. 2014.
    [14] D. Rotondo, V. Puig, F. Nejjari, and J. Romera, “A fault-hiding approach for the switching quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3932-3944, Jun. 2015.
    [15] C.-L. Hwang, W. H. Hung, and Y. Lee, “Tracking design of omnidirectional drive service robot using hierarchical adaptive finite-time control ,” IEEE IECON-2018, Washington D.C. USA, pp. 5680-5685, Oct. 21st -Oct. 23rd , 2018.
    [16] C.-L. Hwang and John Y. Hung, “Stratified adaptive finite-time tracking control for nonlinear uncertain generalized vehicle systems and its application,” IEEE Trans. Contr. Syst. Technol., vol. 27, no. 3, pp. 1308- 1316, May 2019.
    [17] R. H. Abiyev, N. Akkaya, and I. Gunsel, “Control of omnidirectional robot using Z-number-based fuzzy system,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2019.
    [18] C.-L. Hwang and Y.-H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., to be published, 2019.
    [19] W. He, A. O. David, Z. Yin, and C. Sun, “Neural network control of a robotic manipulator with input deadzone and output constraint,” IEEE Trans. Syst., Man, Cybern.: Syst., vol. 46, no. 6, pp. 759-770, Jun. 2016.
    [20] N. Wang, C. Qian, J.-C. Sun, and Y.-C. Liu, “Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles,” IEEE Trans. Contr. Syst. Technol., vol. 24 , no. 4, pp. 1454-1462, Jul. 2016.
    [21] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194- 6204, Oct. 2016.
    [22] M. Van, S. S. Ge, and H. Ren, “Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control,” IEEE Trans. Cybern., vol. 47, no. 7, pp. 1681-1693, Jul. 2017.
    [23] J. Yu, L. Zhao, H. Yu, C. Lin, and W. Dong, “Fuzzy finite-time command filtered control of nonlinear systems with input saturation,” IEEE Trans. Cybern., vol. 48, no. 8, pp. 2378-2387, Aug. 2018.
    [24] C. Yang, Y. Jiang, W. He, J. Na, Z. Li, and B. Xu, “Adaptive parameter estimation and control design for robot manipulators with finite-time convergence,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8112- 8123, Oct. 2018.
    [25] T. Li, R. Zhao, C. L. P. Chen, L. Fang, and C. Liu, “Finite-time formation control of under-actuated ships using nonlinear sliding mode control,” IEEE Trans. Cybern., vol. 48, no. 11, pp. 3243-253, Nov. 2018.
    [26] C. Yang, Y. Jiang, J. Na, Z. Li, L. Cheng, and C.-Y. Su, “Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 574-584, Mar. 2019.
    [27] L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping,” IEEE Trans. Syst. Man & Cybern.: Syst., to be published, 2019.
    [28] W. Li, Z. Su, and Z. Tan, “A variable-gain finite-time convergent recurrent neural network for time-variant quadratic programming with unknown noises endured,” IEEE Trans. Inform., to be published, 2019.
    [29] G.-B. Dai and Y-C Liu, “Distributed coordination and cooperation control for networked mobile manipulators,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 5065-5074, Jun. 2017.
    [30] Z. Zuo, Q.-L. Han, B. Ning, X. Ge, and X.-M. Zhang, “An overview of recent advances in fixed-time cooperative control of multiagent systems,” IEEE Trans. Ind. Inform., vol. 14, no. 6, pp. 2322-2334, Jun. 2018.
    [31] S. Haykin, Neural networks and learn machines, Pearson Edu., Upper Saddle River, NJ, USA, 2009, 3rd ed.
    [32] A. Rocha and S. K. Goldenstein, “Multiclass from binary: expanding one-versus all, one-versus-one and ECOC-based approaches’, IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 2, pp. 289–302, Mar. 2014.
    [33] C.-L. Hwang, B. L. Chen, H. H. Huang, H.H., and H.T. Syu, “Hybrid learning model and MMSVM classification for on-line visual imitation of a human with 3-D motions,” Int. J. Robot. Autonomous Syst., vol. 71, pp. 150–165, 2015.
    [34] S. Anjum, M. S. Sheikh, and D. R. Rotake, “An evolutionary approach for smart wheelchair system,” IEEE ICCSP-2015, pp. 1811-1815, 2015.
    [35] W. Chung, H. Kim, Y. Yoo, C. Moon, and J. Park, “The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3156–3166, Aug. 2012.
    [36] L. Li, S. Yan, X. Yu, Y. K. Tan, and H. Li, “Robust multiperson detection and tracking for mobile service and social robots,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 42, no. 5, pp. 1398-1412, Oct. 2012.
    [37] J. S. Hu, J. J Wang, and D. M. Ho, “Design of sensing system and anticipative behavior for human following of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 4, pp. 1916-1927, Apr. 2014.
    [38] R. Tasaki, M. Kitazaki, J. Miura, and K. Terashima, “Prototype design of medical round supporting robot “Terapio” IEEE ICRA-2015, pp. 829-834, Seattle, Washington, USA, May 26-30, 2015.
    [39] H. C. Huang, “SoPC-based parallel ACO algorithm and its application to optimal motion controller design for intelligent omnidirectional mobile robots,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1828-1838, Nov. 2013.
    [40] J. C. L. Barreto S., A. G. S. Conceic˜ao, C. E. T. D´orea, L. Martinez, and E. R. de Pieri, “Design and implementation of model-predictive control with friction compensation on an omnidirectional mobile robot,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 2, pp. 467-476, Apr. 2014.
    [41] C.-L. Hwang, “Comparison of path tracking control of a car-like mobile robot with and without motor dynamics,” IEEE/ASME Trans. Mechatronics, vol. 21, no., 4, pp. 1801-1811, Aug. 2016.
    [42] J. Yuan, F. Sun, and Y. Huang, “Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7665-7675, Dec. 2016.
    [43] W. Sun, S. Tang, H. Gao, and J. Zhao, “Two time-scale tracking control of nonholonomic wheeled mobile robots,” IEEE Trans. Contr. Syst. Technol., vol. 24, no. 6, pp. 2059-2069, Nov. 2016.
    [44] S. Aguilera-Marinovic, M. Torres-Torriti, and F. Auat-Cheein, “General dynamic model for skid-steer mobile manipulators with wheel-ground interactions,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 433-444, Feb. 2017.
    [45] N. Filipe, A. Valverd, and P. Tsiotras, “Pose tracking without linear and angular-velocity feedback using dual quaternions,” IEEE Trans. Aerospace and Electronic Syst., vol. 52, no. 1, pp. 414-422, Feb. 2016.
    [46] M. Yue, C. An, and Z. Li, “Constrained adaptive robust trajectory tracking for WIP vehicles using model predictive control and extended state observer,” IEEE Trans. Syst. Man and Cybern.: Syst., vol. 48, no. 5, pp. 733-742, May 2018.
    [47] S. P. Bhat and D. S. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, pp. 751-766, 2000.
    [48] H. Wang, Z. Man, H. Kong, Y. Zhao, M. Yu, Z. Cao, J. Zheng, and M. T. Do, “Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5774-5785, Sep. 2016.
    [49] Y. Wang, L. Gu, Y. Xu, and X. Cao, “Practical tracking control of robot manipulators with continuous fractional- order nonsingular terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6194-6204, Oct. 2016.
    [50] J. J. Rath, M. Defoort, H. R. Karimi, and K. C. Veluvolu, “Output feedback active suspension control with higher order terminal sliding mode,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 1392-1403, Feb. 2017.
    [51] J. Wu, J. Li, G. Zong, and W. Chen, “Global finite-time adaptive stabilization of nonlinearly parametrized systems with multiple unknown control directions,” IEEE Trans. Syst. Man Cyber.: Syst., vol. 47, no. 7, pp. 1405-1414, 2017 Jul. 2017.
    [52] B. Tian, L. Liu, H. Lu, Z. Zuo, Q. Zong, and Y. Zhang, “Multivariable finite time attitude control for quadrotor UAV: theory and experimentation,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2567-2577, Mar. 2018.
    [53] Y. Sun, B. Chen, C. Lin, and H. Wang, “Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure,” IEEE Trans. Cyber., to be published, 2018.
    [54] M. Van, M. Mavrovouniotis, and S. S. Ge, “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of a robot manipulator,” IEEE Trans. Syst. Man and Cybern.: Syst.: Syst., to be published, 2018.
    [55] L. Zhao, J. Yu, C. Lin, and Y. Ma, “Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2018.
    [56] S. He, J. Song, and F. Liu, “Robust finite-time bounded controller design of time-delay conic nonlinear systems using sliding mode control strategy,” IEEE Trans. Syst. Man Cyber.: Syst., to be published, 2018.
    [57] E. Alepis and C. Patsakis, “Monkey says, monkey does: Security and privacy on voice assistants,” IEEE Access, vol. 5, pp. 17841-17851, 2017.

    無法下載圖示 全文公開日期 2024/07/30 (校內網路)
    全文公開日期 2024/07/30 (校外網路)
    全文公開日期 2024/07/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE