簡易檢索 / 詳目顯示

研究生: 蔡宗憲
Tsung-Hsien Tsai
論文名稱: 運用長期記憶與ANFIS模型估計不同交易期間台灣股價指數之風險值
Using Long-memory and ANFIS Models to Estimate Value-at-Risk for TAIEX Stock Index in Different Trading Periods
指導教授: 余尚武
Shang-Wu Yu
謝淑貞
none
口試委員: 張琬喻
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理系
Department of Information Management
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: ARFIMA-FIGARCH長期記憶風險值適應性類神經模糊推論系統
外文關鍵詞: ARFIMA-FIGARCH, Long Memory, Value at Risk, ANFIS
相關次數: 點閱:248下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著金融市場規模擴大,眾多新金融商品的推出,金融機構不斷擴充其業務範圍,使得風險管理越來越重要。風險值的概念在1993年被三十人集團(G30)提出後,由於其概念是可以將風險予以量化,所以風險值也逐漸成為金融機構進行風險管控的重要工具,並為大家所普遍認同的新風險指標,各種不同估算風險值的方法也因此相繼地被提出。
    本研究採用傳統計量方法及人工智慧模式來估計不同交易期間台灣發行量加權股價指數的風險值,以每日資料做為研究對象。在傳統計量方法上,使用結合部分整合自我迴歸移動平均(Fractional Integrated Autoregressive Moving Average, ARFIMA)及部分整合自我迴歸條件變異數(Fractional Integrated Generalized Autoregressive Conditional Heteroskedasticity, FIGARCH)兩個可捕捉到資產報酬率具有長期記憶特性的模型,在風險值的計算上不僅考量常態分配,同時也考量了t分配與偏斜t分配的情況,以捕捉資產報酬具有厚尾及偏斜的特性。再者,在人工智慧方法方面,本研究使用適應性類神經模糊推論系統(Adaptive Network Based Fuzzy Inference System, ANFIS)來預測下一日的波動率,以進一步估算及提高風險值衡量的績效。本研究之實證結果如下:
    1.就抽樣期間而言,各抽樣期間表現較好的模型並不相同,由於指數報酬率的厚尾與高峰程度大小不一樣,造成並無一模型為最適模型。
    2.就多頭部位風險值的整體績效來看,以ANFIS模型為相對較佳,ARFIMA(1,d,1)-FIGARCH(1,ξ,1)模型其次,最後為GARCH(1,1)模型。
    3.就空頭方面風險值的整體績效來看,以ARFIMA(1,d,1)-FIGARCH(1,ξ,1)模型表現較佳,其次為ANFIS模型,最後為GARCH(1,1)模型。
    4.整體而言,ANFIS模型在各期間相較之下皆比其他模型穩定,不易受資產報酬率序列厚尾與高狹峰或長期記憶特性的影響。


    After 90’s several famous failed institutions which boomed up due to manipulate derivatives improperly, many countries in the world are paying attention to the risk management progressively. In the early 1990s, three events popularized VaR as a practical tool of risk management for financial institutions: In 1993, Group of Thirty published a groundbreaking report on derivatives practices. In 1994, JP Morgan launched its free RiskMetrics service. In 1995, the Basle Committee on Banking Supervision implemented market risk capital requirements for banks. As a consequence, VaR plays an important role in risk management.

    The study is aimed at TSEC Weighted Stock Price Index in different trading periods. It uses different volatility forecasting models to improve the performance of VaR estimates, and discusses the predictability of different sample frequency and different volatility forecasting models. The study adopts ARFIMA-FIGARCH models to capture returns with long memory based on three kinds of density assumption including normal, Student-t, and skewed Student-t distributions. In addition, artificial intelligence methods regarding Adaptive Neuro-Fuzzy Inference System (ANFIS) is adopted to estimate Value at Risk. The empirical results of the study are summarized as the followings:

    1.In the sampling periods, no models’ performance is superior to others due to different asset return’s distribution.
    2.In terms of the overall performance of VaR model for the long trading positions, ANFIS models are the best. The second and successive models are ARFIMA(1,d,1)-FIGARCH(1,ξ,1), and GARCH(1,1).
    3.In respect of the overall performance of VaR model for the short trading positions, ARFIMA(1,d,1)-FIGARCH(1,ξ,1) models are the best. The second and successive models are ANFIS, and GARCH(1,1).
    4.ANFIS models are more stable than other models in each period. The asset returns’ fat-tailed and kurtosis or long memory property aren’t liable to influence ANFIS models.

    中文摘要I ABSTRACTII 目錄IV 圖目錄V 表目錄V 第一章 緒論1 1.1 研究背景與動機1 1.2 研究目的2 1.3 研究架構4 第二章 文獻探討5 2.1 風險值之定義5 2.2 長期記憶模型6 2.3 國內外相關文獻探討8 第三章 研究方法12 3.1 研究流程12 3.2 計量模型13 3.2.1 單根檢定13 3.2.2 長期記憶檢定15 3.2.3 ARFIMA-FIGARCH模型16 3.2.4 風險值模型18 3.3 人工智慧模型21 3.3.1 適應性類神經網路模糊推論系統21 3.4 波動率預測能力評估25 3.5 風險值模型績效驗證26 3.5.1 Kupiec概似比檢定(Likelihood Ration Test, LR Test)26 第四章 實證結果與分析28 4.1 研究資料與基本統計分析28 4.2 波動率預測能力評估32 4.3 風險值驗證分析35 4.3.1 樣本內風險值35 4.3.2 樣本外風險值41 第五章 結論與建議47 參考文獻49 中文部份49 英文部分50

    中文部份
    1.林孟迪 (2000),「VaR風險管理之保守性、精確度與效率性研究」,私立淡江大學財務金融研究所未出版碩士論文。
    2.林彥豪 (2002),「長期記憶資料之風險值計算」,東吳大學商用數學系未出版碩士論文。
    3.周大慶、沈大白、張大成、敬永康、柯瓊鳳 (2002),「風險管理-風險值理論與應用」,智勝文化事業有限公司出版
    4.王銘祥 (2003),「結合真實波動性預測模型與準蒙地卡羅模擬法於風險值之研究」,國立台灣科技大學資訊管理系未出版碩士論文。
    5.吳秉宗 (2004),「以FIGARCH模型估計長期利率期貨風險值」,國立政治大學國際貿易研究所未出版碩士論文。
    6.唐大倫 (2004),「運用長期記憶模型於估計股票指數期貨之風險值」,國立政治大學國際貿易研究所未出版碩士論文。
    7.張斐章、張麗秋、黃浩倫 (2004),「類神經網路理論與實務」,東華書局出版社。

    英文部分
    1.Andersen, T.G.., T. Bollerslev, F. Diebold, and P. Labys, (1999), “The Distribution of Exchange Rate Volatility”, Working Paper, Sterm School of Business, New York University.
    2.Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, Vol. 31, pp.307-372.
    3.Bollerslev, T. and H.O. Mikkelen, (1996), “Modeling and Pricing Long Memory in Stock Market Volatility”, Journal of Econometrics, Vol. 73, pp.151-184
    4.Box, G. E., and G.. W. Jenkins, (1970) , “Time Series Analysis:Forecasting and Control”, San Francisco: Holden Day. Box, George E. P. and Gwilym
    5.Danielsson, J. and C. de Vies, (2000), “Value-at-Risk and Extreme Returns,” Extremes and Integrated Risk Management, Risk Books, Chapter 8, pp.85-106.
    6.Ding, Z., C.W.J Granger, and R.F. Engle, (1993), “A Long Memory Property of Stock Market Returns and a New Model”, Journal of Empirical Finance, 1, pp.83-106.
    7.Dickey, D. A. and W. A. Fuller, (1979), “Distribution of Estimators for Autoregressive Time Series with a Unit Root” Journal of the American Statistical Association, 74, pp.427—431.
    8.Dickey, D. A. and W. A. Fuller, (1981), “The Likelihood Ratio Statistics for Autoregressive Process” Econometrica, 49, pp.1057—1072.
    9.Embrechts, P. (1999), “Extreme Value Theory: Potential and Limitations as an Integrated Risk Management Tool,” Preprint.
    10.Engle, R.F. (1982), “Autoregressive Conditional Heteroscedasticity With Estimates of The Variance of United Kingdom inflation,” Econometrica, Vol. 50, pp.987-1008.
    11.Engle, R.F. and T. Bollerslev, (1996) “Modeling the Persistence of Conditional Variance”, Econometric Reviews, 5, pp.1-50.
    12.Engle, R.F. and M. Gizycki, (1999), “Conservatism, Accuracy and Efficiency: Comparing Value at Risk Models”, Australian Prudential Regulatory Authority Discussion Paper NO.2
    13.Fernández, C. and M. Steel, (1998), “On Bayesian Modeling of Fat Tails and Skewness”, Journal of the American Statistical Association, 93, pp.359-371.
    14.Greenwood, M. & Yule, G. U. (1920), “An inquiry into the nature of frequency distributions of multiple happenings”, Journal of the Royal Statistical Society, 83, pp.255.
    15.Granger, C. W. J., and Joyeux, R. (1980). “An Introduction to Long-Memory Time Series Models and Fractional Difference”, Journal of Time Series Analysis, 1, pp.15-39.
    16.Grau, T.M.N., 2002, “Modelling daily value-at-risk using FIGARCH type models,” University of Alicnte working paper.
    17.Hosking, J.R.M. (1981), “Fractional Differencing”, Biometrike, 68.,pp.165-176
    18.Hendricks, D. (1996), “Evaluation of Value-at-Risk Models Using Historical Data”, Economic Policy Review Federal Reserve Bank of New York, Vol.2, No.1, pp.39-69.
    19.Jang, J.S. R. (1993), “ANFIS: Adaptive Network-based Fuzzy Inference System”, IEEE Transactions on System, Man and Cybernetics. 23(3): 665-685.
    20.Jenkinson, A. F. (1955), “The Frequency Distribution of the Annual Maximum (or minimum) Values of Meteorological elements,” Quarterly Journal of the Royal Meteorology Society, 87, 145-158.
    21.Jorion, P. (1996), “Value at Risk”, Irwin.
    22.Jorion, P. (2000), “Value at Risk”, 2nd Edition, McGraw-Hill.
    23.Kupiec, P., (1995), “Techniques for Verifying the Accuracy of Risk Measurement Models”, Journal of Derivatives, 2, pp.174-184.
    24.Lambert, P. and S. Laurent, (2001), “Modeling Financial Time Series Using GARCH-type Models and a Skewed Student Density”, Mimeo, University de Liége.
    25.Lo, A.W., (1991), “Long Term Memory in Stock Market Prices”, Econometrica , 59, pp.207-226.
    26.Mandelbrot, B.B, (1963), “The Variation of Certain Speculative Prices”, Journal of Business, Vol. 36, pp.391-419.
    27.Mandelbrot, B.B., (1972), “Statistical Methodology for Non Periodic Cycles: From the Covariance to R/S Analysis”, Annals of Economic and Social Measurement, 1, pp.259-290.
    28.McNeil, A. and R. Frey, (2000,a), “Extreme Value Theory for Risk Managers”, Extremes and Integrated Risk Management, Risk Books, Chapter 1, pp.3-18.
    29.McNeil, A. and R. Frey, (2000), “Estimation of Tail-Related Risk Measures for Heteroscedastic Financial Time Series: An Extreme Value Approach,” Journal of Empirical Finance, Autumn, pp.271-300.
    30.Phillips, P.C.B. and P. Perron, (1998), “Testing for a Unit Root in Time Series Regression”, Biometrica, 77, pp.335-346.
    31.Said, S. and D. Dickey, (1984), “Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order”, Biomertrica, 71, pp.599-667.
    32.Takagi, T. and M. Sugeno, (1983), “Derivation of Fuzzy Control Rules from Human Operator’s Control Actions”, Proc. Of the IFAC Symp. On Fuzzy Information, Knowledge Representation and Decision Analysis, pp.55-60.

    QR CODE