簡易檢索 / 詳目顯示

研究生: 陳婷媛
Ting-Yuan Chen
論文名稱: 褐藻膠之延遲凝膠化應用於骨科支架之探討
Study of delayed gelation of alginate for bone defect therapy
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
Cheng-Kang Lee
蔡宏斌
Hong-Bing Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 58
中文關鍵詞: 褐藻膠膠原蛋白PluronicR F127凝膠化溫度敏感性生物相容性骨母細胞纖維母細胞
外文關鍵詞: alginate, collagen, PluronicR F127, gelation, thermosensitivity, biocompatibility, fibroblasts, osteoblasts
相關次數: 點閱:302下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以褐藻膠粒子(alginate beads)來做為鈣離子釋放之載體並延遲鈣離子在褐藻膠中凝膠化的時間,並且在褐藻膠中加入膠原蛋白以促進細胞增長並混入PluronicR F127(F127)使此支架具備溫度敏感性,使得在37℃下能提升整體材料的黏滯性以及剛硬性。將褐藻膠鈣粒子(Beads)、高濃度褐藻膠、膠原蛋白以及F127以混摻的方式完成支架的製備。支架性質以動態機械分析儀(DMA)以及流變儀(Rheometer)測定其溫度敏感性質以及凝膠化前後的機械性質。鈣離子的均勻性可由紫外/可見光光譜儀(UV-Vis)測定Beads在茜素紅溶液中隨時間的釋放情形,並由光學顯微鏡觀察鈣離子的分佈情形。生物相容性則以纖維母細胞以及骨母細胞進行培養,以MTT assay進行細胞毒性測試並以Trypan Blue染色法進行細胞貼附實驗。本研究發現當樣品加入Beads後,鈣離子會與褐藻膠進行交聯反應而使得材料具有彈性,且在37℃下因F127展現其溫敏性而使得支架的黏滯性提升,另外,由於鈣離子隨時間的增長其釋放量增加,支架的剛硬性亦隨時間而增加。細胞毒性測試結果發現,含有膠原蛋白的材料對於纖維母細胞和骨母細胞的生長幫助並不大,含F127的樣品則有減緩生長的情形,但整體支架對於細胞而言是較無毒性的;細胞貼附測試的結果則發現,這次研究所採用的支架是有利於纖維母細胞和骨母細胞的貼附以及生長。因此初步評估此支架是可運用於骨材方面的應用。


    In this study, alginate beads are used to be the carrier of calcium ions and delay the gelation of alginate. In order to facilitate the growth of cells, collagen was added into the alginate solution. PluronicR F127(F127) was also mixed with alginate solution to make a thermosensitive scaffold. The mechanical properties were measured by DMA and Rheometer, which displayed the thermosensitivity of gel and the modulus of gelation before and after. The evenness of calcium ions in gel was proved by UV-Vis measurements for calcium ions release in alizarin red S (ARS) solution. The distribution of calcium ions in alginate gel after dying by ARS solution was also observed by optical microscope. For biocompatibility, L929 fibroblasts and hFOB 1.19 osteoblasts were tested in this study. The cell toxicity test was done by MTT assay and cell adhesion test was proved by Trypan Blue staining. The results showed that the gelation occurred in a gradual manner by the change of modulus since the release of calcium ions increasing by time and cause ionic crosslinking which update the elasticity of gel. Thermosensitivity in gel also appeared under 37℃ because of adding F127. In addition, the growth of L929 fibroblasts and hFOB 1.19 osteoblasts evaluated non-toxicity in gel. The results from cell adhesion test also proved L929 fibroblasts and hFOB 1.19 osteoblasts can attach the surface of scaffold and grow. These results showed that this scaffold have possibility to applied in bone materials.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖表索引 VII 第一章 緒論 1 1.1 前言 1 1.2 研究背景與目的 1 第二章 文獻回顧 3 2.1 組織工程 3 2.2 水膠的定義 3 2.3 溫度敏感型水膠 4 2.4 骨重塑 5 2.5 骨材的分類 6 2.5.1 天然骨材 6 2.5.2 人工骨材 6 2.6 褐藻酸鈉簡介 8 2.7 膠原蛋白簡介 9 2.8 PluronicR F-127簡介 9 第三章 實驗流程與製備 11 3.1 藥品與材料 11 3.2 儀器設備 12 3.3 實驗流程 13 3.4 材料製備以及實驗 13 3.4.1 海藻酸鈉水溶液的配製 13 3.4.2 膠原蛋白溶液配製 13 3.4.3 氯化鈣水溶液的配製 13 3.4.4 Beads的製備 14 3.4.5 樣品的製備 14 第四章 實驗測試方法 16 4.1 動態機械分析儀測試 16 4.2 流變儀測試 16 4.3 鈣離子釋放測定 16 4.4 鈣離子分佈情形 17 4.5 細胞培養測試 17 4.5.1 纖維母細胞培養 17 4.5.2 骨母細胞培養 17 4.5.3 細胞毒性測試 18 4.5.4 細胞生長測試 19 第五章 結論(Conclusion) 20 5.1 機械性質 21 5.1.1 凝膠化前模數測定 21 5.1.2 溫度敏感性測試 25 5.1.3 凝膠化後模數測定 27 5.1.3.1 儲存模數(G’)分析 27 5.1.3.2 剪切模數(G)分析 32 5.1.4 壓縮模數(E)測試 37 5.2 鈣離子濃度測定 40 5.3 鈣離子分佈情形 41 5.4 細胞毒性測試 43 5.4.1 纖維母細胞毒性測試 43 5.4.2 骨母細胞毒性測試 47 5.5 細胞生長測試 50 第六章 結論 52 第七張 參考文獻 54

    [1] W. C. Long Bi, Hongbin Fan, Guoxian Pei, "Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma," Biomaterials, vol. 31, pp. 3201-3211, 2010.
    [2] A. A. Mehrdad Hamidi, Pedram Rafiei "Hydrogel nanoparticles in drug delivery," Advanced Drug Delivery Reviews, vol. 60, pp. 1638-1649, 2008.
    [3] K. P. Yong Qiu, "Environment-sensitive hydrogels for drug delivery," Advanced Drug Delivery Reviews, vol. 53, pp. 321-339, 2001.
    [4] Q. Z. C. K. Rezwan, J.J. Blaker, Aldo Roberto Boccaccini, "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 3413-3431, 2006.
    [5] I. A. A. J. Parsons, N. Han, R. Felfel, C. D. Rudd, "Mimicking Bone Structure and Function with Structural Composite Materials," Journal of Bionic Engineering, vol. 7, pp. S1–S10, 2010.
    [6] H. R. R. Zhensheng Li, Kip D. Hauch, Demin Xiao, Miqin Zhang, "Chitosan-alginate hybrid scaffolds for bone tissue engineering," Biomaterials, vol. 26, pp. 3919-3928, 2005.
    [7] M. M. R. Russo, and G. Santagata, "Effect of Cross-Linking with Calcium Ions on the Physical Properties of Alginate Films," Biomacromolecules, vol. 8, 2007.
    [8] S. S. S.K. Bajpai, "Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions," Reactive and Functional Polymers, vol. 59, pp. 129-140, 2004.
    [9] J. J. VN Deshmukh, VJ Masirkar, DM Sakarkar, "Formulation, Optimization and Evaluation of Controlled Release Alginate," Research J. Pharm. and Tech.2, vol. 2, pp. 324-327, 2009.
    [10] Y. F. Liangbin Li, Rob Vreeker, and Ingrid Appelqvist, "Reexamining the Egg-Box Model in Calcium Alginate Gels with X-ray Diffraction," Biomacromolecules, vol. 8, pp. 464-468, 2007.
    [11] C. A. G. Isabel Santacruz, Maria I. Nieto, Rodrigo Moreno, "Application of alginate gelation to aqueous tape casting technology," Materials Research Bulletin, vol. 37, pp. 671-682, 2002.
    [12] P. X. M. Catherine K. Kuo, "Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering Part 1. Structure, gelation rate and mechanical properties," Biomaterials, vol. 22, pp. 511-521, 2001.
    [13] J. D. L. N. G. W. Vandenberg, "Evaluation of protein release from chitosan-aginate microcapsules produced using external or internal gelation," Journal of Microencapsulation, vol. 18, pp. 433-441, 2001.
    [14] A. M. S. N.C. Hunt, U. Gbureck, R.M. Shelton, L.M. Grover, "Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation," Acta Biomaterialia, vol. 6, pp. 3649-3656, 2010.
    [15] K. J. Z. X.Z. Shu, "The release behavior of brilliant blue from calcium–alginate gel beads coated by chitosan- the preparation method effect," European Journal of Pharmaceutics and Biopharmaceutics, vol. 53, pp. 193-201, 2002.
    [16] W. Y. Y. X. D. LIU, Y. ZHANG, W. M. XUE, W. T. YU, Y. XIONG, X. J. MA, Y. CHEN, Q. YUAN, "Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources," Journal of Microencapsulation, vol. 19, pp. 775-782, 2002.
    [17] P. B. M. Eric Westhaus, "Triggered release of calcium from lipid vesicles a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels," Biomaterials, vol. 22, pp. 453-462, 2001.
    [18] M. L. H. Y.C. Fu, S.C. Wu, H.S. Hsieh, C.K. Wang, "Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder," Materials Science and Engineering: C, vol. 28, pp. 1149-1158, 2008.
    [19] K. H. Susan Chubinskaya, Monika Schulze, Lori Otten, Margaret B. Aydelotte, and a. A. A. Cole, "Gene Expression by Human Articular Chondrocytes Cultured in Alginate Beads," Journal of Histochemistry & Cytochemistry, vol. 49, pp. 1211-1219, 2001.
    [20] Y. A. G. Michael D. Buschmann, Alan J. Grodzinsky, James H. Kimura, and Ernst B. Hunziker, "Chondrocytes in Agarose Culture Synthesize Mechanically Functional Extracellular Matrix," Journal of Orthopaedic Research, vol. 10, pp. 745-758, 1992.
    [21] 饒文娟,「果膠的混摻水膠之藥物釋放行為及生物相容性」,博士論文,國立臺灣科技大學高分子工程研究所,台北 (2009)。
    [22] M. G. Wenguang Liu, Fengfu LI, "Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation," Journal of Materials Science: Materials in Medicine, vol. 19, pp. 3365-3371, 2008.
    [23] P. B. Job L C van Susante, Gerjo J V M van Osch, Diny Versleyen, Peter M van der Kraan, Wirn B van der Berg, George N Homminga, "Culture of chondrocytes in alginate and collagen carriers gels," Acta Orthop Scand, vol. 66, pp. 549-556, 1995.
    [24] M.-C. Y. Yen-Hsien Lee, "Effect of poly(γ-glutamic acid) on the gelation of Pluronic F127," Polymers for Advanced Technologies, vol. 20, pp. 703-705, 2009.
    [25] M. B. Laura Mayol, Fabiana Quaglia, Sabato Fusco, Assunta Borzacchiello, and M. I. L. R. Luigi Ambrosio, "Injectable Thermally Responsive Mucoadhesive Gel for Sustained Protein Delivery," Biomacromolecules, vol. 12, pp. 28-33, 2011.
    [26] M. R. D. E. Carlos A. Are’valo-Silva, MD; Yilin Cao, MD; Martin Vacanti, MD; and M. C. A. V. Yulai Weng, MD, "Internal support of tissue-engineered cartilage," Arch Otolaryngol Head Neck Surg, vol. 126, pp. 1448-1452, 2000.
    [27] 許富發, 「特定單脈衝電磁場對尼古丁所引發造骨細胞凋亡之抑制效果」,碩士論文,私立中原大學醫學工程研究所,桃園 (2004)。
    [28] W. G. G. Carl A. Gregory, Alexandra Peister, Darwin J. Prockop, "An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction," Analytical Biochemistry, vol. 329, pp. 77-84, 2004.
    [29] G. Shi, Chen, Y., Wan, C., Yu, X., Feng, T.,Ding, Y., "Study on the preparation of chitosan–alginate complex membrane and the effects on adhesion and activation of endothelial cells," Applied Surface Science, vol. 255, pp. 422-425, 2008.
    [30] Y. N. Shinichi Maeno, Hideo Matsumoto, Hideo Morioka, Taku Yatabe, Atsushi Funayama, Yoshiaki Toyama, Tetsushi Taguchi, Junzo Tanaka, "The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture," Biomaterials, vol. 26, pp. 4847-4855, 2005.

    QR CODE