簡易檢索 / 詳目顯示

研究生: 阮英勇
ANH - DUNG NGUYEN
論文名稱: 高功率雙向降壓升壓轉換器之數位控制策略
Digital Control Strategy for High Power Bidirectional Buck-Boost Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 林景源
Jing-Yuan Lin
呂錦山
Ching-Shan Leu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 60
中文關鍵詞: 雙向直流-直流轉換器數位控制降壓升壓轉換器相移控制演算法比例積分控制器
外文關鍵詞: bidirectional DC-DC converter, digital control, buck-boost converter, phase shift control algorithm, PI controller
相關次數: 點閱:305下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於系統對兩個直流匯流排之間和直流匯流排與電池之間能量傳遞能力的需求用來越大,雙向直流-直流轉換器受到了很大的關注。除了傳統不斷電系統的應用,雙向直流-直流轉換器也用在許多新的應用,例如:再生能源系統、燃料電池能源系統和油電混合動力車。在本論文中提出了利用工作週期和相移控制演算法的策略並應用在雙向降壓升壓轉換器上。雖然類比IC能成功的使用在許多應用,但是卻受限於多功能操作狀況的應用和很複雜的控制策略上,類比IC是無法達成的。除此之外,本論文亦利用數位訊號處理器開發了數位控制策略。利用比例積分控制器來調整工作週期,同時利用功率來計算相位移。利用數位控制,可以應用更複雜的控制策略來改善電路效率及功率密度。
    本論文研製一5 kW之雙向降壓升壓轉換器來證明其控制策略之可行性,並提出降壓模式與升壓模式的實驗結果。


    Bidirectional DC-DC converters have recently received a lot of critical attention due to the increasing needs for systems capable of transferring power between two dc buses or between dc bus and battery storage. Apart from the traditional uninterruptible power supply (UPS) applications, bidirectional DC-DC converters are also used in many new applications such as renewable energy system, fuel cell energy system, and even hybrid electric vehicle. In this thesis, a bidirectional buck-boost converter with both duty ratio and phase shift control algorithm is proposed. Although analog ICs are successfully applied in many applications; the limited adaption to versatile operation conditions and difficulty on fulfilling sophisticated control scheme preclude analog solutions from the consideration list. Instead, the digital control solution based on digital-signal processor (DSP) is exploited in this thesis. The duty ratio is modulated by PI controller; while the phase shift is adjusted by power requirement calculation. With digital control, more complex control scheme can be implemented to improve the efficiency and also power density.
    A 5kW bidirectional buck-boost converter is implemented to verify the feasibility of the control strategy. The experimental results show the performance of the proposed circuit both in buck mode and boost mode.

    Abstract i Acknowledgement ii Content iii List of Figures v List of Tables ix List of Abbreviations x Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Organization of thesis 2 Chapter 2 Principle of Bidirectional Buck-Boost Converter 4 2.1 Operational principle of Bidirectional Buck-Boost Converter 4 2.1.1 Boost mode: 6 2.1.2 Buck mode 12 2.1.3 Calculation of the switching times 19 2.2 Modeling of bidirectional Buck-Boost Converter 20 Chapter 3 Digital control strategy for Bidirectional Buck-Boost Converter 28 3.1 Digital PI compensator 29 3.2 Phase-shift controller algorithm 31 3.2.1 Boost operation 31 3.2.2 Buck operation 33 3.3 Control Law Accelerator (CLA) 34 Chapter 4 Implementation and experimental result 37 4.1 Design of Bidirectional Buck-Boost Converter 37 4.1.1 Design of the inductor: 37 4.1.2 Phase shift control 39 4.1.3 Design of the feedback loop 43 4.2 Software implementation 45 4.3 Experimental results 46 Chapter 5 Conclusion and future research 57 5.1 Conclusion 57 5.2 Future research 57 Reference 58

    [1] S. S. Williamson, S. M. Lukic, and A. Emadi, “Comprehensive Drive Train Efficiency Analysis of Hybrid Electric and Fuel Cell Vehicles based on Motor Controller Efficiency Modeling,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 730-740, May 2006.
    [2] A. Emadi, S. S. Williamson, and A. Khaligh, “Power Electronics Intensive Solutions for Advanced Electric, Hybrid Electric, and Fuel Cell Vehicular Power Systems,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 567-577, May 2006.
    [3] R. Samuel Rajesh Bahu, J. Henry, “A Comparative Analysis of DC-DC Converter for Renewable Energy System,” IMECS 2012, vol.2, Mar.2012.
    [4] D. Patel Ankita, “Analysis of Bidirectional Buck-Boost Converter by Using PWM Control Scheme,” ISSN: 2321-9939, Electronics and Communication, Marwadi Education Foundation Group of Institute, Rajkot, India.
    [5] Texas Instruments, “Modeling of Bi-directional Buck/Boost Converter for Digital Control Using C2000 Microcontroller,” Application report SPRABX5, January 2015.
    [6] O. García, P. Zumel, A. de Castro, and J. A. Cobos, “Automotive DC-DC Bidirectional Converter Made with Many Interleaved Buck Stages,” IEEE Trans. Power Electron., vol. 21, no. 3, pp. 578-586, May 2006.
    [7] B. Eckardt and M. Marz, “A 100kW Automotive Power Train DC/DC Converter with 25kW/dm3 by Using SiC,” presented at the PCIM, Nurnbeg, Germany, May 2006.
    [8] R. M. Schupbach and J. C. Balda, “Comparing DC-DC Converter for Power Management in Hybrid Electric Vehicles,” in Proc. IEMDC, vol. 3, pp. 1369-1374, June 2003.
    [9] F. Caricchi, F. Crescimbiri, and A. Di Napoli, “20kW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives,” in Proc. IEEE APEC, vol. 2, pp. 887-892, March 1995.
    [10] S. W. Johann and W. Kolar "A novel low-loss modulation strategy for high-power bidirectional buck+boost converters", IEEE Trans. Power Electron., vol. 24, no. 6, pp.1589 -1599 2009.
    [11] R. Gurunathan and A. K. S. Bhat, “Zero Voltage Switching DC Link Single Phase Pulsewidth- Modulated Voltage Source Inverter,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1610-1618, Sep. 2007.
    [12] D. Lei , W. Xueping , L. Zhen and L. Xiaozhong "A new soft switching bidirectional buck or boost DC-DC converter," Proc. Int. Conf. Electr. Mach. Syst., pp.1163 -1167 2008
    [13] A. Khaligh, “A Multiple-Input DC-DC Positive Buck-Boost Converter Topology,” in IEEE APEC 2008, pp. 1522-1526, 2008.
    [14] F. Caricchi, F. Crescimbini, F. Giulii Capponi, L. Solero, “Study of Bidirectional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives,” IEEE Power Electron., vol. 1, pp. 287-293, Feb. 1998.
    [15] Y. Li, and F.C. Lee, “ A Comparative Study of A Family of Zero-Current-Transition Schemes for Three-Phase Inverter Applications,” Applied Power Electronics Conference and Exposition, APEC 2001, vol. 2, pp. 1158-1164.
    [16] Chong-Eun Kim, Sang-Kyoo Han, Kang-Hyun Yi, Woo-Jin Lee, and Gun-Woo Moon, “ A New High Efficiency ZVZCS Bidirectional DC/DC Converter for 42V Power System of HEVs,” IEEE Power Electron., PESC ’05, pp. 792-797, 2005.
    [17] Robert W. Erickson, Dragan Maksimovic, “Fundamentals of Power Electronics,” Second Edition, University of Colorado Boulder, Colorado.
    [18] C. Takami, T. Mishima, M. Nakaoka, “A New ZVS Phase Shift-Controlled Class D Full-Bridge High-Frequency Resonant Inverter for Induction Heating,” ICEMS 2012 International Conference, pp. 1-6.
    [19] N. Yongyuth, P. Viriya, K. Matsuse, “Analysis of A Full-Bridge Inverter for Induction Heating Using Asymmetrical Phase-Shift Control under ZVS and Non-ZVS Operation,” Power Electronics and Drive Systems, PEDS ’07, pp. 476-482, 2007.
    [20] B. Ray and A. Rommey-Diaz, “Constant Frequency Resonant Topologies for Bidirectional DC/DC Power Conversion,” in Proc.IEEE PESC, Seattle, WA, USA, Jun. 1993, pp. 1031-1037.
    [21] Minsoo Jang, Agelidis, V.G., "A digitally controlled single-phase buck-boost inverter using a dual DSP, " Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE , vol., no., pp.187, 192, 10-13 Nov. 2013.
    [22] Y.J. Lee, A. Khaligh, A. Chakraborty, A. Emadi, “Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients,” Trans. Power Electronics, vol. 24, pp. 1267-1279, 2009.
    [22] F. Z. Peng, Li Hui, Su Gui-Jia, J. S. Lawler, “A New ZVS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” Trans. Power Electronics, vol. 19, pp. 54-65, 2004.
    [23] V. V. S. K Bhajana, S. R. Reddy, “A Novel ZVS-ZCS Bidirectional DC-DC Converter for Fuel Cell and Battery Application,” on IEEE PEDS 2009, pp. 12-17.
    [24] Philip T. Krein, “Elements of Power Electronics,” University of Illinois at Urbana-Champaign.
    [25] Ned Mohan, Tore M. Undeland, William P. Robbins, “Power Electronics: Converters, Applications and Design,” second Edition.
    [26] C. Basso, “Switch- Mode Power Supplies Spice Simulations and Practical Designs,” McGraw-Hill, First Edition, May.2005.
    [27] Texas Instruments, “C28x IQ-Math library,” Datasheet, Oct. 2005.
    [28] Texas Instruments, “TMS2803x Piccolo System Control and Interrupt- Reference Guide,” Datasheet, May. 2009.
    [29] Texas Instruments, “TMS320x2833x, 2823x High Resolution Pulse Width Modulator (HRPWM) - Reference Guide,” Datasheet, Feb.2009.
    [30] Texas Instruments, “TMS3202803x Piccolo - Technical Reference Manual,” Datasheet, Nov. 2012.
    [31] ST Microelectronics, “STW45NM60, N-Channel, 600V-0.09Ω-45A, TO-247, MDmesh TMPower MOSFET”.
    [32] Allegro Microsystem, “High Bandwidth, Fast Fault Response Current Sensor IC in Thermally Enhanced Package”, ASC709.

    QR CODE