簡易檢索 / 詳目顯示

研究生: 張家榮
Chia-Jung Chang
論文名稱: 磁振頻譜影像後處理分析的加速與整合探討
Computation Acceleration and Integration in Magnetic Resonance Spectroscopic Imaging (MRSI) Post-processing and Analysis.
指導教授: 林益如
Yi-Ru Lin
口試委員: 黃騰毅
Teng-Yi Huang
林發暄
Fa-Hsuan Lin
蔡尚岳
Shang-Yueh Tsai
莊子肇
Tzu-Chao Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 72
中文關鍵詞: 磁振頻譜後處理曲線凝合
外文關鍵詞: PEPSI, MRS Post- processing, Signal filtering, Phase correction
相關次數: 點閱:262下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

磁振頻譜 (MagnDetic Resonance Spectroscopy) 是一種藉由觀察各種不同代謝物本身的頻譜來分析的方法。在頻譜上,各種代謝物 (NAA, creatine, choline and glx) 都有其自己獨特的位置以及含量,藉由觀察頻譜及定量可以來探討受試者或是病人體內的病變。
在磁振頻譜的處理中,最重要的部分就是後處理 (Post-processing)。後處理主要是在將原本得到的訊號經過一系列人為的校正之後,還原出頻譜應有的樣貌。原本的訊號有太多的雜訊,隨著時間的流逝,訊號衰減掉但雜訊仍然存在,所以後處理就是將原本充滿雜訊與影響頻譜品質的因素去除的動作。看似簡單的處理實則花費不少的時間,在本論文當中會探討在我們磁振頻譜研究中有運用到的後處理方法,例如水訊號的抑制、雜訊濾除、相位校正,以及如何提升整體的運算速度同時保有原本的精準度。最後會提到如何更即時的運用在臨床研究上面。
LCModel是一套在分析MRS各種資訊且具有公信力的軟體,但是相對的耗時,成本也比較高。本論文將會提到如何運用MATLAB演算法來分析頻譜的曲線凝合以及與LCModel的結果比較。藉以達到能在沒有LCModel的情況下也能做基本但又不失準確性的分析。


Magnetic resonance spectroscopic (MRS) has been widely applied in clinical experiment and research for many years, and can provide correct, clear and reliable spectrum result for researchers to observe metabolites, such as NAA, creatine, choline and glx. By applying rapid RF sequence, such as Proton Echo Planar Spectroscopy Image (PEPSI), the data acquisition time can have significant reduction. The most important part in MRS research is post-processing, which can decide the completeness of final result by adjusting different methods into procedure like eddy current correction, removal of the water signal, signal filtering, zero filling, phase correction and baseline correction. But not all of the methods were included in our research; instead our research is tend to obtain the balance between accuracy and speed acceleration.

論文誌謝 3 中文摘要 4 Abstract 5 Contents 6 List of Figure 8 Chapter 1 Introduction to Magnetic Resonance Spectroscopy 10 1.1 History 10 1.2 Metabolism 12 1.3 MRS Background 14 1.4 Motivation 17 Chapter 2 Proton Echo Planar Spectroscopy Image (PEPSI) 18 2.1 Echo Planar Imaging 18 2.2 Chemical Shift Imaging 20 2.3 PEPSI 21 Chapter 3 MRS Post-processing Material and Method 29 3.1 Filters 29 3.2 Phase correction 33 3.3 Curve fitting 38 3.4 MEX-Function in MATLAB 41 Chapter 4 Results 55 4.1 Post-processing Result Comparison 55 4.2 Peak Fitting Result Comparison between MATLAB and LCModel 57 Chapter 5 Discussions 67 Chapter 6 Conclusion 70 Reference 71

[1] F. Bloch, W. W. Hansen, and M. Packard, “Nuclear Induction,” Physical Review, vol. 69, no. 3-4, pp. 127, 1946.
[2] W. G. Proctor, and F. C. Yu, “The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound,” Physical Review, vol. 77, no. 5, pp. 717, 1950.
[3] W. C. Dickinson, “Dependence of the F19 Nuclear Resonance Position on Chemical Compound,” Physical Review, vol. 77, no. 5, pp. 736, 1950.
[4] Ernst, R. R., Anderson, W. A, “Application of Fourier Transform Spectroscopy to Magnetic Resonance,” Review of Scientific Instruments, vol. 37, pp. 93-102, Jan 1966.
[5] P. C. Lauterbur, “Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance,” Nature, vol. 242, no. 5394, pp. 190-191, 1973.
[6] P. Mansfield, “Multi-planar image formation using NMR spin echoes,” Journal of Physics C: Solid State Physics, vol. 10, no. 3, pp. L55, 1977.
[7] P. Mansfield, “Spatial mapping of the chemical shift in NMR,” Magnetic Resonance in Medicine, vol. 1, no. 3, pp. 370-386, 1984.
[8] S. Posse, S. R. Dager, T. L. Richards et al., “In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI),” Magn Reson Med, vol. 37, no. 6, pp. 858-65, Jun, 1997.
[9] S. Posse, G. Tedeschi, R. Risinger et al., “High speed 1H spectroscopic imaging in human brain by echo planar spatial-spectral encoding,” Magn Reson Med, vol. 33, no. 1, pp. 34-40, Jan, 1995.
[10] J. C. Lindon and A. G. Ferrige, “Digitisation and data processing in Fourier transform NMR,” Prog. NMR Spectrosc. 14, pp. 27–66, 1980.
[11] L. Vanhamme, T. Sundin, P. Van Hecke and S. Van Huffel , “MR spectroscopy quantitation: A review of time-domain methods,” NMR Biomed. 14, pp. 233–246, 2001.
[12] K. James. UnderstandingNMRSpectroscopy http://www.spectroscopynow.
com/coi/cda/landing.cda?chId=5&type=Education.
[13] F. Jiru, “Introduction to post-processing techniques,”Eur J Radiol 67, pp. 202–217, 2008.
[14] B.J. Soher, K. Young, A. Bernstein, Z. Aygula and A.A. Maudsley, “GAVA: spectral simulation for in vivo MRS applications,” J. Magn. Reson. 185, pp. 291–299, 2007.
[15] A.W. Simonetti, W.J. Melssen, M. van der Graaf, A. Heerschap and L.M.C. Buydens, “Automated correction of unwanted phase jumps in reference signals which corrupt MRSI spectra after eddy current correction,” J. Magn. Reson. 159, pp. 151–157, 2002.
[16] L. CHEN, Z. WENG, L. GOH, AND M. GARLAND, “An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization,” J. Magn. Reson., 158, pp. 164–68, 2002.
[17] A. Heuer, “A new algorithm for automatic phase correction by symmetrizing lines,” J Magn Reson 91:241–53, 1991.

QR CODE