簡易檢索 / 詳目顯示

研究生: 翁瑄博
Xuan-Bo Wong
論文名稱: 奈微米鑽石於不同結構矽基板之場發射特性研究
Nano/Micro crystalline diamond on silicon-based templates for field emission studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyankay Jou
張守進
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 矽奈米線金字塔奈米鑽石
外文關鍵詞: NCD, SiNWs, Pyramid
相關次數: 點閱:342下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是探討在不同結構上成長奈微米鑽石之場發射特性之影響。本研究中係使用微波電漿化學氣相沉積系統將奈微米鑽石沉積於平面矽、金字塔及矽奈米線/金字塔結構,藉由場發射電子顯微鏡觀察鑽石的表面形態,並分別利用拉曼光譜儀與化學分析電子光譜儀及原子力顯微鏡分析鑽石品質特徵與sp3/sp2 比值及鑽石表面粗糙度。
經由超音波震盪前處理NCD/SiNWs/Pyramid-Si的結構比其他結構有較低的起始電場(3.11 V/μm),如NCD/Planar-Si (4.8 V/μm)及NCD/Pyramid-Si (4.35 V/μm)。而使用研磨加震盪前處理的NCD/SiNWs/Pyramid-Si結構有較低的起始電場(3.2 V/μm),而NCD/Pyramid-Si之起始電場為(3.9 V/μm)。
在使用C10H16與乙二醇做為種子層在平面及金字塔結構上成長微米鑽石,其起始電場由MCD/Planar-Si 3.86 V/μm降低至MCD/Pyramid-Si 3.15 V/μm,使用C10H16與二乙二醇做為種子層在平面及金字塔結構上成長微米鑽石,其起始電場則由MCD/Planar-Si 4.5 V/μm降低至MCD/Pyramid-Si 2.9 V/μm。


In this dissertation, Nano/Micro crystalline diamond were fabricated on different silicon-based structures to study the effect on the field emission properties. NCD and MCD were deposited on Planar-Si, Pyramid-Si and SiNWs/Pyramid-Si by microwave plasma chemical vapor deposition system. The surface morphologies of diamond were characterized by the field emission scanning electron microscopy. The characterizations of diamond were analyzed by Raman, XPS and AFM to show the quality, the sp3/sp2 ratio and average roughness of diamond, respectively.

It is found that the turn on electric field of NCD/SiNWs/Pyramid-Si field emission cathode is lower (3.11 V/μm) through ultrasonication pretreatment than other structures such as NCD/Planar-Si (4.8 V/μm) and NCD/Pyramid-Si (4.35 V/μm). And the lower turn on electric field NCD/SiNWs/Pyramid-Si (3.2 V/μm) through rub and ultrasonication pretreatments than other structure such as NCD/Pyramid-Si (3.9 V/μm).

While using C10H16 and ethylene glycol as seeds layer to deposite MCD on Planar-Si and Pyramid structures, the turn on field improved from 3.86 V/μm of MCD/Planar-Si to 3.15 V/μm of MCD/Pyramid-Si. And 4.5 V/μm of MCD/Planar-Si to 2.9 V/μm of MCD/Pyramid-Si by using C10H16 and diethylene glycol as seeds layer.

Keyword: NCD, SiNWs, Pyramid

目錄 摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 前言 1 第二章 文獻回顧 3 2.1 金字塔結構之蝕刻機制 3 2.2 矽奈米線之蝕刻機制 5 2.3 鑽石薄膜種類與特性簡介 9 2.3.1 類鑽碳薄膜 9 2.3.2 奈米鑽石薄膜 11 2.4 奈微米鑽石成核機制與特性 12 2.5 奈微米鑽石薄膜之成長方法 14 2.5.1 微波電漿化學氣相沉積法 (Microwave Plasma Chemical Vapor Deposition system) 14 2.5.2 熱燈絲化學氣相沉積法 (Hot filament CVD system) 15 2.5.3 射頻電漿放電法 (RF plasma glow discharge system) 15 2.6 場發射理論 16 第三章 實驗設備與方法 19 3.1 實驗流程 19 3.2 鹼性蝕刻溶液製備金字塔結構 20 3.2.1 矽晶圓前處理流程 20 3.2.2 鹼性蝕刻溶液製備金字塔結構 21 3.3 銀粒子輔助製備矽奈米線 22 3.4 鑽石種子層之製備於不同模板 23 3.4.1 以鑽石粉末(震盪、研磨、震盪加研磨)製備種子層 23 3.4.2 以C10H16(烘烤、乙二醇浸泡、二乙二醇浸泡)製備種子層 23 3.5 奈微米鑽石薄膜之成長於不同模板(Planar Si、Pyramid、SiNW/Pyramid) 24 3.6 奈微米鑽石電子場發射量測 25 3.7 實驗量測儀器分析 26 3.7.1 場發射掃描式電子顯微鏡 (FE-SEM) 26 3.7.2 顯微拉曼光譜儀 (Micro-Raman) 26 3.7.3 X光繞射分析儀 (XRD) 27 3.7.4 原子力顯微鏡 (AFM) 28 3.7.5 X射線光電子能譜儀 (XPS) 28 第四章 結果與討論 29 4.1以鑽石粉末研磨前處理技術成長奈米鑽石於不同結構:(a)NCD/Planar- Si(b)NCD/Pyramid-Si(c)NCD/SiNWs/Pyramid-Si上之特性分析 29 4.1.1表面形態分析 29 4.1.2拉曼光譜儀及X射線光電子能譜儀分析 34 4.1.3 電子場發射特性分析 36 4.2以鑽石粉末震盪前處理技術成長鑽石於不同結構(a-c)上之特性分析 40 4.2.1表面形態分析 40 4.2.2拉曼光譜儀及X射線光電子能譜儀分析 45 4.2.3 電子場發射特性分析 47 4.3 以鑽石粉末研磨加超音波震盪前處理技術成長奈微米鑽石於不同結構:(a-c)上之特性分析 51 4.3.1 表面形態分析 51 4.3.2 拉曼光譜儀及X射線光電子能譜儀分析 56 4.3.3 電子場發射特性分析 59 4.4 以C10H16為種子層在不同結構(a)MCD/Planar-Si(b)MCD/Pyramid-Si上成長奈微米鑽石之場發射元件特性分析 61 4.4.1 以烘烤前處理技術成長奈微米鑽石於平面矽基板上之特性分析 61 4.4.2 以乙二醇前處理技術成長微米鑽石於不同結構(a-b)上之特性分析 63 4.4.3 以二乙二醇前處理技術成長微米鑽石於不同結構(a-b)上之特性分析 68 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

參考文獻
[1] Y.M. Liu, Y. Sung, Y.C. Chena, M.D. Ger,”A Method to Fabricate Field Emitters Using Electroless Codeposited Composite of MWNTs and Nickel”,Electrochemical and Solid-State Letters, pp.J101-J104 (2007)
[2] B.R. Huang, T.C. Lin, Jinn P. Chu, Y.C. Chen,”Long-term stability of a horizontally-aligned carbon nanoruve field emission cathode coated with a metallic glass thin film”,CARBON, pp.I619-I624 (2012)
[3] J. Zhang, T. Feng, W. Yu, X. Liu, X. Wang, Q. Li, ”Enhancement of field emission from hydrogen plasma processed carbon nanotubes”, Diamond and Related Materials,pp.54-59 (2004)
[4] Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seeling, and R.P.H. Chang,“A nanotube-based field-emission flat panel display”,Appl. Phys.,p.2912 (1998)
[5] Y.C. Lee, D. Pradhan, S.J. Lin, C.T. Chia,H.F. Cheng, I.N. Lin,“Effect of surface treatment on the electron field emission property of nano-diamond films”,Diamond Related Mater.,pp.2055-2058 (2005)
[6] Y. C. Lee, S. J. Lin, C. T. Chia, H. F. Cheng, I. N. Lin,“Synthesis and electron field emission properties of nanodiamond films”, Diamond and Related Materials,pp.2100-2104 (2004)
[7] K.J. Sankaran, H.C. Chen, B Sundaravel, C.Y. Lee, N.H. Tai, ”Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films”,APPLIED PHYSICS LETTERS,p.102 (2013)
[8] Y.F.Tzeng, Y.C. Lee, C.Y. Lee, H.T. Chiu, I.N. Lin,“Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, pp.753-757 (2008)
[9] W.C. Shih, P.C. Huang, H.C. Chen, I.N. Lin,”Growth of Microcrystalline Diamond Films on Textured Si Substrates to enhance the Electron Field Emission Properties”,Japanese Journal of Applied Physics,p.51 (2012)
[10] H.Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishim,”Synthesis of Well-Alligned diamond Nanocylinders”,Adv. Mater.pp.247-249 (2001)
[11] W.J. Zhang, Y.Wu, W.K. Wong, X.M. Meng, C.Y. Chan, I. Bello, S.T. Lee,“Structuring nanodiamond cone arrays for improved field emission”, Appl. Phys. Lett.p.3365 (2003)
[12] W.P. Kang, J.L. Davidson, A. Wisitsora-at, D.V. Kerns, S. Kerns, “Recent development of diamond microtip field emitter cathodes and devices” J. Vac. Sci. Technol.B (2001)
[13] P.T. Joseph, N.H. Tai, Y.F. cheng, C.Y. Lee. H.F. Cheng, I.N. Lin, “Growth and electron field emission properties of ultrananocrystalline diamond on silicon nanostructures”Diamond & Related Materials,pp.169-172 (2009)
[14] Y.C. Chen, C. Li“Chemical vapor deposition of diamond on silicon substrates coated with adamantine in glycol chemical solutions”, RSC Adv.,pp.1514-1518 (2013)
[15] P.J. Holmes, “The Electrochemistry of Semiconductors”, Academic press, p.329 (1962)
[16] A.K. Chu, J.S. Wang, Z.Y. Tsai, and C.K. Lee “A simple and cost–effective approach for fabricating pyramids on crystalline silicon wafers”, Solar Energy Materials and Solar Cells, pp.1276-1280 (2009)
[17] I.Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions”, Sensors and Actuators a-Physical,pp.138-147 (2001)
[18] H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan,“Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching”,Applied Surface Science, pp.5451-5454 (2012)
[19] Y. Cao, A. Liu, H. Li, Y. Liu, F.Qiao, Z. Hu, and Y. Sang, “Fabrication of silicon wafer with ultra low reflectance by chemical etching method,”Applied Surface Science,pp.7411-7414 (2011)
[20] X. Li, B.K. Tay, P. Miele, A. Brioude, and D. Cornu,“Fabricarion of silicon pyramid/nanowire binary structure with superhydrophobicity”,Applied Surface Science,pp.7411-7414 (2011)
[21] W.K. Choi, J.T.L. Thong, P. Luo, C.M. Tan, T.H. Chua, and Y. Bai, “Characterisation of pyramid formation arising from the TMAH etching of silicon”,Sensors and Acruators a-Physical,pp.238-243 (1998)
[22] M.G. Kang, S.Tark, J.C. Lee, C.S. Son, and D.Kim,“Changes in efficiency of a solar cell according to various surface-etching shapes of silicon substrate”,Journal of Crystal,pp.14-18 (2011)
[23] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”,J. Electrochem,pp.3612-3626 (1990)
[24] G.T.A.Kovacs, N.I. Maluf, and K.E. Petersen,”Bulk micromachining of silicon”, Proceedings of the Ieee, pp.1536-1551 (1998)
[25] K.E. Bean,”Anisotropic Etching of Silicon”,Ieee Transactions on Electron Devices,pp.1185-1193 (1978).
[26] 錢佑欣,”緩衝液及二氧化矽對(100)單晶矽KOH濕蝕刻形成之微結構及反射性研究”,碩士論文, 機械工程系所, 大同大學, 台北, 2010.
[27] K.-Q.P.Y.-J.Y.S.-P.G.a.J.zhu,”Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Advanced Materials, pp.1164-1167 (2002)
[28] K.Q.Peng, Y.J. Yan, S.P. Gao, and J.Zhu,”Dendrite-assisted growth of silicon nanowires in electroless metal deposition”, Advanced Functional Materials, pp.127-132 (2003)
[29] K. Peng and J. Zhu, “Simultaneous gold deposition and formation of silicon nanowire arrays”, Journal of Electroanalytical Chemistry, pp.35-39 (2003)
[30] K.Peng and J.Zhu,”Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution”, Electrochimica Acta, pp.2563-2568 (2004)
[31] K.Q. Peng, Z.P. Huang, and J. Zhu,”Fabrication of large-area silicon nanowire p-n junction diode arrays”, Advanced Materials, pp.73-76 (2004)
[32] 張瀚丞,“在HF水溶液中氧化劑和溫度對矽奈米線形成速率及微結構之影響”,碩士論文, 材料科學及工程研究所, 國立成功大學, 台南, (2008)
[33] T. Qiu and P.K. Chu, “Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials,” Materials Science and Engineering: R: Reports, pp.59-77 (2008)
[34] H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, “Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications“, Nanotechnology, p.255703 (2008)
[35] D.K. Sanjay K. Srivastava, P.K. Singh, and Vikram Kumar,“SILICON NANOWIRE ARRAYS BASED ”BLACK SILICON”SOLAR CELLS”,IEEE pp.001851-001856 (2009)
[36] G.H. Johnson, A.R. Badzian and M.W. Geis, Diamond and Diamondlike Materials Synthesis, MRS, Pittsburgh (1988).
[37] Gordon Davies, Simon C. Lawson, Alan T. Collins, Alison Mainwood, and Sarah J. Sharp, “Vacancy-related centers in diamond”,Diamond Relat.Mater, p.13157 (1992).
[38] 陳培麗,鑽石與類鑽薄膜簡介, 科儀新知,pp.83-91 (1991)
[39] M.A. Tamor, W.C. Vassell, “Raman “fingerprinting” of amorphous carbon films”, J. Appl. Phys., p.3823 (1994)
[40] D.W. Han, S.M. Jeong, H.K. Baik, S.J. Lee, N.C. Yang, D.H. Suh, “Electron injection enhancement by diamond-like carbon film in organic electroluminescence devices”,Thin Solid Films,p.190 (2002)
[41] Pawer, K.W.Nugent,Y.Lifshitz, G.D.Lempert, E. Grossman, J.Kulik, I.Avigal, R. Kalish, ”Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition”,diamond and Related Materials,p.433 (1996)
[42] J.J. Cuomo, D.L. Pappas, J.Bruley, J.P. coyle and K.L. Saenger, “Vapor Deposition Processes for Amorphous Carbon Films with sp3 Fractions Approaching diamond”,J. Appl. Phys.,p.1706 (1991)
[43] C. Weissmantel, “Ion Based Growth of Wpecial Films: Techniques and Mechanisms”, Thin solid Films, p.55 (1982)
[44] Y.Lifshitz, S.R. Kasi and J.W. Rabelais,”Molecular-Dynamics of Amorphization by Introduction of Chemical Order in Crystalline NiZr”, Phys. p.10468 (1990)
[45] J. Koike, D.M. Parkin and T.E. Mitchell,”Displacement Energy Threshold for Type IIa Diamond”, Appl. Phys.Lett., p.1450 (1992)
[46] D.R. Mckenzie, D. Muller and B.A. Pailthorpe,”Compressive Stress-Induced Formation of Thin-Film Tetrahedral Amorphous Carbon”, Phys. Rev.Lett., p.773 (1992)
[47] B.A. Pailthorpe,”Molecular-Dynamics Simulation of Atomic Process at the Low Temperature Diamond (111) surface”, J. Appl. Phys.p.543 (1991)
[48] H.P. Kaukonen and R.M. Nieminen,”Molecular-Dynamics of the Growth of Diamondlike Films by energetic Carbon-Atom Beams”,Phys. Rev. Lett.,p.620 (1992)
[49] J. Robertson,”Mechanical Properties and Structure of diamond-like Carbon”, Diamond Relat.Mater.p.984 (1993)
[50] C.A. Davis,”A Simple Model for Formation of Compressive Stress in Thin Films by Ion Bombardment”,Thin solid Films, p.30 (1993)
[51] Jong-Hee Park, T.S. sudarshan, Chemical vapor deposition, The materials information society (1989)
[52] R.F. Davis Noyes, Diamond Films and Coatings, Moyes publications, p.69 (1993)
[53] Prasanta Kumar Datta, James Sinclair Gray, Royal Society of Chemistry (Great Britain), Surface Engineering: Fundamentals of coatings, Royal Society of Chemistry, p.219 (1993)
[54] Huimin Liu, David S. Dandy, Diamond chemical vapor deposition, Noyes publications, (1996)
[55] X.Jiang, W.J. Zhang, M. Paul, and C.-P. Klages, “Diamond film orientation by ion bombardment during deposition”, Appl. Phys. Lett., p.1927 (1997)
[56] Sumio Iijima, Yumi Aikawa, and Kazuhiro Baba, “Early formation of chemical vapor deposition diamond films”, Appl. Phys. Lett, p.2646 (1990)
[57] Paul A. denning and David A. Stevenson, “influence of substrate topography on the nucleation of diamond thin films”, Appl. Phys. Lett, p.1562 (1992)
[58] S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, “Vapor Deposition of Diamond Particles from Methane”, Japanese J. Appl. Phys, p.183 (1982)
[59]Jitendra N.Tiwari,Rajanish N.Tiwari,Gyan Singh,Kun-Lin Lin,”Direct Synthesis of Vertically Interconnected 3-D Graphitic Nanosheets on Hemispherical Carbon Particles by Mcrowave Plasma CVD”,Plasmonics,pp.67-73 (2011)
[60] Suneet Arora, V.D. Vankar, “Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness”, Thin Solid Films, p.1963 (2006)
[61] S. Matsumoto, M. Hino, T. Kobayashi, “Synthesis of Diamond Films in a RF induction Thermal Plasma”, Appl. Phys. Lett, p.737 (1987)
[62] Tao Zhang,Xinchang Wang,Bin Shen,Fanghong Sun,Zhiming Zhang,”The effect of deposition parameters on the morphology of micron diamond powders synthesized by HFCVD method”,Journal of Crystal Growth, pp.49-56 (2013)
[63] D.E. Meyer, R.O. Dillon, J.A. Woolam, “Radio-frequency Plasma Chemical Vapor Deposition Growth of Diamond”, J. Vac. Sci. Technol. p.2325 (1989)
[64] S.J. Kim, B. K. Jul, Y.H. Lee, B.S. Park, IEEE, p.526 (1996)
[65] O. Groning, O.M. Kuttel, C.H. Emmenegger, P. Groning and L.Schlapbach,”Field emission properties of carbon nanotubes”, J. Vac. Sci. technol, p.665 (2000)
[66] F. Paschen, Wied. Ann 69 (1889)
[67] Richard L. CmCreey, Raman Spectroscopy for Chemical Analysis, John Wiley and Sons,NY,pp.1-5 (2000)
[68] Yu-Fen Tzeng, Chi-Young Lee, Hsin-Tien Chiu, Nyan-Hwa Tai,I-Nan Liin, ”Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires”,Diamond & Related Materials,pp.1817-1820 (2008)
[69] K.G. Saw, J. du Plessis, Materials Letters, pp.1344-1348 (2004)
[70] Rajanish n. Tiwari, Li Chang,“Growth, microstructure, and field-emission properties of synthesized diamond film on adamantine-coated silicon substrate by microwave plasma chemical vapor deposition”,J. Appl. Phys,p.103305 (2010)

QR CODE