簡易檢索 / 詳目顯示

研究生: 陳威澄
Wei-Cheng Chen
論文名稱: 合成含苯並咪唑之聚醯亞胺質子交換膜及其性質研究
Synthesis and Characterization of Polyimides Containing Benzimidazoles Groups for Proton Exchange Membrane
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 邱昱誠
王健珍
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 苯並咪唑聚醯亞胺質子傳導度質子交換膜
外文關鍵詞: Benzimidazole, Polyimide, Proton conductivity, Proton exchang membrane
相關次數: 點閱:331下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

成功開發主鏈含苯並咪唑之新型二胺單體1-amino-5-(2-(5-aminobenzimidazolyl))-2-methylbenzene (m-CH3/IM/NH2),並將這新二胺單體、芳香族二胺與六環酸酐Naphthal-enetetracarboxylic dianhydride(NTDA)進行高溫聚縮合形成一系列的PI共聚物,其固有黏度範圍在1.01~1.64 dL/g之間,均可塗佈成具有韌性之薄膜,這些共聚物有好的熱安定性,於氮氣下10%重量損失溫度皆有517℃以上,而氮氣下的裂解溫度也在457℃以上,這些PI共聚物乾膜的抗張強度介於102~196 MPa之間,但是當摻雜磷酸後,薄膜受到磷酸的膨潤,機械強度會有明顯下降。因此藉由甲基側基進行交聯反應,形成交聯PI共聚物,交聯後PI共聚物因受交聯鍵結,使高分子鏈緊密堆積,導致磷酸摻雜量稍微減少,但仍能有足夠高的質子傳導度,並能維持好的機械性質。所合成PI共聚物的質子傳導度在磷酸摻雜率大於280%,幾乎都比m-PBI高,例如C7-m7Bis2F0.3DMB0.7在200℃時之質子傳導度(294% H3PO4 uptake, 76.4 mS/cm)高於m-PBI(280% H3PO4 uptake, 56.8 mS/cm),非常有潛力應用於高溫型燃料電池的質子傳導膜。


A novel diamine 1-amino-5-(2-(5-aminobenzimidazolyl))-2-methylbenzene (m-CH3/IM/NH2), containing benzimidazole backbone was synthesized. The copolyimides (PIs) were prepared by polycondensation of the diamines and Naphthalene-tetracarboxylic dianhydride(NTDA). They had inherent viscosities in the range of 1.01~1.64 dL/g, and they could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temperature more than 517℃ in nitrogen, and their onset temperature was more than 457℃ in nitrogen. These films exhibited good mechanical properties with tensile stress between 102 and 196 MPa. However, the mechanical properties of PIs significantly decreased when phosphoric acid doping level increased. This situation could be improved via crosslinking reaction of methyl group, cross-linked PIs would form close packing, and it led to decrease of phosphoric acid doping level, but it could still maintain high proton conductivity. The PIs when phosphoric acid doping level exceeded 280%, exhibited higher proton conductivity than m-PBI(280% H3PO4 uptake, 56.8 mS/cm). For example, C7-m7Bis2F0.3DMB0.7 had higher proton conductivity at 200℃(294% H3PO4 uptake, 76.4 mS/cm). Thus, these PIs could be the promising materials alternative to m-PBI membrane for high-temperature fuel cells applications because of their high proton conductivity and good oxidative stability.

中文摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1前言 1 1.2燃料電池簡介 3 1.2.1發展及原理 3 1.2.2特色 4 1.2.3種類與應用 5 1.3質子交換膜燃料電池介紹 8 1.3.1質子交換膜燃料電池 8 1.3.2高溫型質子交換膜的優點 9 1.3.3質子交換膜種類 11 1.4文獻回顧 12 1.4.1聚苯並咪唑(Polybenzimidazole,PBI) 12 1.4.2 PBI傳導機制 14 1.4.3聚醯亞胺(Polyimide,PI) 16 1.4.4交聯方式 18 1.4.5高溫型質子交換膜限制與挑戰 19 1.5研究動機 20 第二章 實驗 22 2.1實驗藥品 22 2.2實驗程序 24 2.2.1單體合成 25 2.2.2聚醯亞胺共聚物合成 27 2.3聚合物之物性與化性分析 29 第三章 結果與討論 33 3.1單體與PIs的合成 33 3.2固有黏度 39 3.3溶解度測試 40 3.4確認交聯反應 41 3.5熱性質分析 44 3.6 PI共聚物組成對磷酸摻雜量的效應 47 3.7膨潤度測試 50 3.8質子傳導度分析 52 3.8.1溫度對質子傳導度的效應 52 3.8.2化學構造對質子傳導度的效應 59 3.9機械強度量測 60 3.9.1未摻雜磷酸薄膜機械性質量測 60 3.9.2摻雜磷酸薄膜機械性質量測 62 3.10甲基交聯對機械性質影響 64 3.11氧化安定性測試 65 第四章 結論 67 第五章 參考文獻 69

1. Carrette, L.; Friedrich, K. A.; Stimming, U., Fuel Cells: Principles, Types, Fuels, and Applications. 2000, 1 (4), 162-193.
2. Li, X., Principles of fuel cells. CRC Press: 2005.
3. Ogungbemi, E.; Ijaodola, O.; Khatib, F. N.; Wilberforce, T.; El Hassan, Z.; Thompson, J.; Ramadan, M.; Olabi, A. G., Fuel cell membranes – Pros and cons. Energy 2019, 172, 155-172.
4. Haile, S. M., Materials for fuel cells. Materials Today 2003, 6 (3), 24-29.
5. Larminie, J.; Dicks, A.; McDonald, M. S., Fuel cell systems explained. J. Wiley Chichester, UK: 2003; Vol. 2.
6. 台灣燃料電池資訊網 FC運作. http://www.tfci.org.tw/Fc/class.asp.
7. Barbir, F., PEM Fuel Cells(Second Edition), Barbir, F., Ed. Academic Press: Boston, 2013; pp 1-16.
8. Wang, Y.; Ruiz Diaz, D. F.; Chen, K. S.; Wang, Z.; Adroher, X. C., Materials, technological status, and fundamentals of PEM fuel cells – A review. Materials Today 2019.
9. Rikukawa, M.; Sanui, K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science 2000, 25 (10), 1463-1502.
10. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.-t.; Lee, J. H., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science 2011, 36 (6), 813-843.
11. Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P., Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chemical Society Reviews 2010, 39 (8), 3210-3239.
12. Villers, D.; Jacques-Bédard, X.; Dodelet, J. P., Fe-based catalysts for oxygen reduction in PEM fuel cells pretreatment of the carbon support. Journal of the Electrochemical Society 2004, 151 (9), A1507-A1515.
13. Oh, H.-S.; Oh, J.-G.; Roh, B.; Hwang, I.; Kim, H., Development of highly active and stable non-precious oxygen reduction catalysts for PEM fuel cells using polypyrrole and a chelating agent. Electrochemistry Communications 2011, 13 (8), 879-881.
14. Yang, C.; Srinivasan, S.; Aricò, A. S.; Cretì, P.; Baglio, V.; Antonucci, V., Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochemical and Solid-State Letters 2001, 4 (4), A31-A34.
15. Alberti, G.; Casciola, M.; Palombari, R., Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures. Journal of Membrane Science 2000, 172 (1), 233-239.
16. Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B., Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). Journal of Membrane Science 2001, 185 (1), 73-81.
17. Kopitzke, R. W.; Linkous, C. A.; Nelson, G. L., Thermal stability of high temperature polymers and their sulfonated derivatives under inert and saturated vapor conditions. Polymer Degradation and Stability 2000, 67 (2), 335-344.
18. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J., PBI-Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration. Fuel Cells 2004, 4 (3), 147-159.
19. Unnikrishnan, E. K.; Kumar, S. D.; Maiti, B., Permeation of inorganic anions through Nafion ionomer membrane. Journal of Membrane Science 1997, 137 (1), 133-137.
20. Schlichting, G. J.; Horan, J. L.; Jessop, J. D.; Nelson, S. E.; Seifert, S.; Yang, Y.; Herring, A. M., A Hybrid Organic/Inorganic Ionomer from the Copolymerization of Vinylphosphonic Acid and Zirconium Vinylphosphonate. Macromolecules 2012, 45 (9), 3874-3882.
21. Schechter, A.; Savinell, R. F., Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells. Solid State Ionics 2002, 147 (1), 181-187.
22. Wang, J. T.; Savinell, R. F.; Wainright, J.; Litt, M.; Yu, H., A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochimica Acta 1996, 41 (2), 193-197.
23. Wang, J. T.; Lin, W. F.; Weber, M.; Wasmus, S.; Savinell, R. F., Trimethoxymethane as an alternative fuel for a direct oxidation PBI polymer electrolyte fuel cell. Electrochimica Acta 1998, 43 (24), 3821-3828.
24. Lobato, J.; Cañizares, P.; Rodrigo, M. A.; Linares, J. J., Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Applied Catalysis B: Environmental 2009, 91 (1), 269-274.
25. Weber, M., Formic Acid Oxidation in a Polymer Electrolyte Fuel Cell. Journal of The Electrochemical Society 1996, 143 (7), L158.
26. Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications 2000, 2 (10), 697-702.
27. Hasiotis, C.; Qingfeng, L.; Deimede, V.; Kallitsis, J. K.; Kontoyannis, C. G.; Bjerrum, N. J., Development and Characterization of Acid-Doped Polybenzimidazole/Sulfonated Polysulfone Blend Polymer Electrolytes for Fuel Cells. Journal of The Electrochemical Society 2001, 148 (5), A513.
28. Kim, H.-J.; An, S. J.; Kim, J.-Y.; Moon, J. K.; Cho, S. Y.; Eun, Y. C.; Yoon, H.-K.; Park, Y.; Kweon, H.-J.; Shin, E.-M., Polybenzimidazoles for High Temperature Fuel Cell Applications. Macromolecular Rapid Communications 2004, 25 (15), 1410-1413.
29. Wainright, J. S., Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of The Electrochemical Society 1995, 142 (7), L121.
30. Cassidy, P. E., Thermally stable polymers, synthesis and properties. 1980.
31. Aharoni, S. M.; Signorelli, A. J., Electrical resistivity and ESCA studies on neutral poly(alkylbenzimidazoles), their salts, and complexes. Journal of Applied Polymer Science 1979, 23 (9), 2653-2660.
32. Xing, B.; Savadogo, O., The effect of acid doping on the conductivity of polybenzimidazole (PBI). Journal of New Materials for Electrochemical Systems 1999, 2 (2), 95-101.
33. Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F., Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. Journal of the Electrochemical Society 1995, 142 (7).
34. Weng, D.; Wainright, J. S.; Landau, U.; Savinell, R. F., Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. Journal of the Electrochemical Society 1996, 143 (4), 1260-1263.
35. Li, Q.; He, R.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J., Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 2004, 168 (1-2), 177-185.
36. He, R.; Li, Q.; Xiao, G.; Bjerrum, N. J., Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. Journal of Membrane Science 2003, 226 (1-2), 169-184.
37. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E. W.; Rogers, D.; Apple, T.; Benicewicz, B. C., High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chemistry of Materials 2005, 17 (21), 5328-5333.
38. Kim, T. H.; Lim, T. W.; Lee, J. C., High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. Journal of Power Sources 2007, 172 (1), 172-179.
39. Kim, T.; Lee, H., A 2D FE model for unique solution of peening residual stress in single shot impact. Transactions of the Korean Society of Mechanical Engineers, A 2008, 32 (4), 362-370.
40. Sannigrahi, A.; Arunbabu, D.; Jana, T., Thermoreversible gelation of polybenzimidazole in phosphoric acid. Macromolecular Rapid Communications 2006, 27 (22), 1962-1967.
41. Gieselman, M. B.; Reynolds, J. R., Water-Soluble Polybenzimidazole-Based Polyelectrolytes. Macromolecules 1992, 25 (18), 4832-4834.
42. Klaehn, J. R.; Luther, T. A.; Orme, C. J.; Jones, M. G.; Wertsching, A. K.; Peterson, E. S., Soluble N-substituted organosilane polybenzimidazoles. Macromolecules 2007, 40 (21), 7487-7492.
43. Pu, H.; Liu, G., Preparation and proton conductivity of poly(N-methylbenzimidazole) doped with acid. Polymers for Advanced Technologies 2004, 15 (12), 726-730.
44. Pu, H.; Liu, G., Synthesis and solubility of poly(N-methylbenzimidazole) and poly(N-ethylbenzimidazole): Control of degree of alkylation. Polymer International 2005, 54 (1), 175-179.
45. Kim, S.-K.; Kim, T.-H.; Jung, J.-W.; Lee, J.-C., Polybenzimidazole containing benzimidazole side groups for high-temperature fuel cell applications. Polymer 2009, 50 (15), 3495-3502.
46. Qian, G.; Smith, D. W.; Benicewicz, B. C., Synthesis and characterization of high molecular weight perfluorocyclobutyl-containing polybenzimidazoles (PFCB–PBI) for high temperature polymer electrolyte membrane fuel cells. Polymer 2009, 50 (16), 3911-3916.
47. Chang, Z.; Pu, H.; Wan, D.; Liu, L.; Yuan, J.; Yang, Z., Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells. Polymer Degradation and Stability 2009, 94 (8), 1206-1212.
48. Pu, H.; Meyer, W. H.; Wegner, G., Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. Journal of Polymer Science Part B: Polymer Physics 2002, 40 (7), 663-669.
49. Zuo, Z.; Fu, Y.; Manthiram, A., Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells. Polymers 2012, 4 (4), 1627-1644.
50. Hoogers, G., Fuel cell technology handbook. CRC press: 2002.
51. Kreuer, K.-D.; Rabenau, A.; Weppner, W., Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors. Angewandte Chemie International Edition in English 1982, 21 (3), 208-209.
52. Ueki, T.; Watanabe, M., Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities. Macromolecules 2008, 41 (11), 3739-3749.
53. Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science 2012, 37 (7), 907-974.
54. Zhang, H.; Shen, P. K., Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews 2012, 112 (5), 2780-2832.
55. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E., Alternative Polymer Systems for Proton Exchange Membranes (PEMs). Chemical Reviews 2004, 104 (10), 4587-4612.
56. Chen, J.-C.; Wu, J.-A.; Lee, C.-Y.; Tsai, M.-C.; Chen, K.-H., Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. Journal of Membrane Science 2015, 483, 144-154.
57. Genies, C.; Mercier, R.; Sillion, B.; Petiaud, R.; Cornet, N.; Gebel, G.; Pineri, M., Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer 2001, 42 (12), 5097-5105.
58. Kerres, J. A., Development of ionomer membranes for fuel cells. Journal of Membrane Science 2001, 185 (1), 3-27.
59. Shen, C.-H.; Jheng, L.-c.; Hsu, S. L.-c.; Wang, J. T.-W., Phosphoric acid-doped cross-linked porous polybenzimidazole membranes for proton exchange membrane fuel cells. Journal of Materials Chemistry 2011, 21 (39), 15660-15665.
60. 王鉫允. 合成含苯並咪唑側基之聚醯亞胺質子交換膜及其性質研究. 國立臺灣科技大學, 台北市, 2019.
61. 陳思源. 合成新型含苯並噁唑側基之聚苯咪唑於中溫型燃料電池質子傳導膜之性質研究. 國立臺灣科技大學, 台北市, 2013.
62. Mader, J. A.; Benicewicz, B. C., Sulfonated Polybenzimidazoles for High Temperature PEM Fuel Cells. Macromolecules 2010, 43 (16), 6706-6715.

無法下載圖示 全文公開日期 2025/07/30 (校內網路)
全文公開日期 2070/07/30 (校外網路)
全文公開日期 2070/07/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE