簡易檢索 / 詳目顯示

研究生: 蕭語媜
Yu-Jhen Siao
論文名稱: 鈮酸鋰 / 鋯酸鋰修飾富鎳層狀氧化物之研究
Lithium Niobate/Lithium Zirconate Modified Nickel-rich Layered Oxides
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
吳乃立
Nae-Lih Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 140
中文關鍵詞: 富鎳層狀材料正極材料表面改質機械式包覆濕式原子包覆法人工固態電解質界面界面穩定性
外文關鍵詞: Nickel-rich layered material, cathode material, surface modification, mechanical coating, wet atomic layer deposition coating method, artificial solid electrolyte interface, interface stability
相關次數: 點閱:350下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

富鎳層狀材料因其具高的比電容量(約220 mAh / g)而備受期待。然而其具有一些缺點,例如熱穩定性差、易於與電解液發生副反應,電容量快速下降,阻礙了其商業化的發展。本研究使用兩種不同的表面塗覆方法穩定富鎳材料,並使用穩定之金屬氧化物層,作為人工固態電解質界面層。因此,富鎳陰極材料將不會與液體電解質直接接觸,並且可以減少副反應發生之可能。此外,還期望在充電和放電過程中降低過渡金屬之溶解,使界面穩定性提高。因此可以預期電池的電化學性能增強。
使用了兩種表面塗覆方法。第一個是機械塗層(即機械融合)。其原理是將剪切應力施加到奈米金屬氧化物上,以覆蓋陰極粉末的表面,在其中測試了不同的混合比例和塗覆時間。分別測試了鈮酸鋰和鋯酸鋰作為二次粒子表面之塗層。仔細檢查參數和材料的影響,以確保電阻的增加最小化。第二種方法是自創之濕式原子塗覆方法,該方法使用Sol-Gel方法的原理,將鈮酸鋰/鋯酸鋰塗覆在NCM二次粒子表面上。希望獲得比機械融合更完整,更光滑的塗層。實驗結果顯示,塗有鈮酸鋰/鋯酸鋰的粉末在高倍率放電(0.5 C)下具有出色的穩定性。 100次循環後,電容量保持率高於85%。鋯酸鋰塗佈之粉末甚至可以達到90.66%,遠遠超出改質前的樣品。與改質之前相比,具塗覆的材料在更高的電位下也更穩定。
與機械和化學塗覆方法相比,前一種方法有更多的限制。例如,塗佈時間不能太長,並且需要更大量的原料,但是操作更快且方便。相比之下,化學塗佈法生產靈活,並且儘管需要更長時間的操作,但能夠確保完整的表面包覆。
關鍵字 : 富鎳層狀材料、正極材料、表面改質、機械式包覆、濕式原子包覆法、人工固態電解質界面、界面穩定性


Nickel-rich layered cathode materials are highly expected because of their high specific capacitance, about 220 mAh/g. However, some disadvantages, such as poor thermal stability, prone to side reactions with electrolyte, rapid decline in capacity, have impeded its commercialization. This study was envisaged to use two different surface coating methods to coat the nickel-rich materials with a stable metal oxide layer to endow an artificial solid electrolyte interface layer. Thus, the nickel-rich cathode materials would not be in direct contact with the liquid electrolyte, and possible side reactions could be reduced. Further, the dissolution of transition metal during the charge and discharge processes is also expected to decrease, and the interfacial stability improves. So enhanced electrochemical properties of the cell with Ni-rich layered oxide cathode could be expected.
Two surface coating methods were used. The first one is the mechanical coating (i.e., mechanofusion). Its principle is to apply the shear stress to the nano-sized metal oxide to cover the surface of cathode powders, where different mixing ratios and coating time were parameters tested. The lithium niobate and lithium zirconate were tested as the coating on the surface of the secondary particles, respectively. The effects of parameters and materials were scrutinized to ensure the minimum increase in resistance. The second method is the newly proposed wet atomic layer deposition (Wet-ALD) method, which uses the principle of a Sol-Gel method to coat the lithium niobate/lithium zirconate on the surface of the NCM secondary particles. It was hoped to achieve a complete and smoother coating by the Wet-ALD method than the mechanofusion. The experimental results showed that the powder coated with lithium niobate/lithium zirconate has excellent stability under high rate discharge (0.5 C). After 100 cycles, the capacity retention rate was higher than 85%. The lithium zirconate -coated powder could even reach 90.66%, which is higher than the sample before modification. The coated material was also more stable at higher potential than pristine material.
When the cathode materials prepared by the Wet-ALD method compared to the mechanofusion one, the latter method exists more restrictions. For example, the coating time cannot be too long, and the more considerable amount of feedstocks is required, but the operation is faster and convenient. In contrast, the chemical coating method is flexible in production and capable of ensuring a complete surface coating, though it needs a more extended operation.
Keywords: Nickel-rich layered material, cathode material, surface modification, mechanical coating, wet atomic layer deposition coating method, artificial solid electrolyte interface, interface stability

摘要 I ABSTRACT II 致謝 IV 目錄 VI 圖目錄 VIII 表目錄 XIV 第 1 章 緒論 1 1.1 前言 1 1.2 電池分類 2 1.3 鋰離子電池的發展史 3 1.4 鋰離子電池的組成及反應機制 5 1.4.1 正極材料(Cathode) 7 第 2 章 富鎳層狀正極材料(Ni-rich layered cathode material ) 13 2.1 富鎳正極材料之問題 15 2.1.1 陽離子混合 (Cation mixing) 15 2.1.2 熱穩定性問題 16 2.1.3 表面汙染物影響 18 2.1.4 NCM內部Micro crack的形成 19 2.2 電極材料之表面改質 23 2.2.1 Sol-gel溶膠凝膠法 25 2.2.2 Chemical vapor deposition(CVD)化學氣相沉積法 26 2.2.3 Atomic layer deposition(ALD) 原子層沉積法 28 2.2.4 Co-precipitation共沉澱表面塗佈 29 2.2.5 Dry-coating 乾式包覆法 30 2.2.6 Mechanofusion機械式包覆法 31 2.3 研究動機與目的 33 第 3 章 實驗方法及實驗儀器 35 3.1 材料合成 35 3.1.1 LiNbO3之合成 35 3.1.2 Li2ZrO3之合成 36 3.1.3 LiNi0.8Co0.1Ni0.1O2合成 38 3.1.4 LiNbO3 / Li2ZrO3機械式表面包覆 39 3.1.5 LiNbO3 / Li2ZrO3濕式表面包覆 40 3.2 實驗儀器及配件 42 3.3 材料結構及特性鑑定 44 3.3.1 XRD X-ray 繞射分析儀 44 3.3.2 場發射掃描式電子顯微鏡(FE-SEM) 44 3.3.3 場發射穿透式電子顯微鏡 (FE-TEM) 45 3.4 電池材料電化學特性測試 47 第 4 章 機械式包覆法(Mechanofusion) 51 4.1 LiNbO3 / Li2ZrO3包覆材料結構鑑定及表面型態 51 4.1.1 XRD 晶體結構特徵分析 52 4.1.2 SEM 表面型態分析 53 4.2 NCM811包覆LiNbO3 / Li2ZrO3材料結構鑑定 54 4.2.1 包覆材料粉體XRD結構分析 54 4.2.2 循環後之XRD結構分析 56 4.3 NCM811包覆LiNbO3 / Li2ZrO3材料型態分析 60 4.3.1 包覆材料粉體SEM型態分析 60 4.3.2 包覆材料粉體TEM型態分析 67 4.3.3 循環後之SEM型態分析 69 4.4 NCM811包覆LiNbO3 / Li2ZrO3材料電化學分析 72 4.4.1 開環電位之交流阻抗分析 72 4.4.2 長圈數穩定性測試 75 4.4.3 XPS極片表面鑑定分析 91 第 5 章 濕式原子層沉積法(Wet- Atomic layer deposition) 101 5.1 NCM811包覆LiNbO3 / Li2ZrO3材料XRD結構鑑定 101 5.2 NCM811包覆LiNbO3 / Li2ZrO3材料SEM型態分析 103 5.3 NCM811包覆LiNbO3 / Li2ZrO3材料電化學分析 105 5.3.1 開環電位之交流阻抗分析 105 5.3.2 長圈數穩定性測試 106 第 6 章 結論 111 第 7 章 未來展望 115 第 8 章 文獻回顧 117

[1] 交通部中央氣象局. 地球的溫度正在發生怎樣的變化. Available: https://www.cwb.gov.tw/V8/C/K/Qa/qa_3_1.html
[2] Taiwantrade. Li-Polymer Rechargeable Batteries. Available: https://tw.taiwantrade.com/product/%E8%81%9A%E5%90%88%E7%89%A9%E9%8B%B0%E9%9B%BB%E6%B1%A0-li-polymer-rechargeable-batteries-1814425.html#
[3] G. N. Lewis and F. G. Keyes, "THE POTENTIAL OF THE LITHIUM ELECTRODE," vol. 35, no. 4, pp. 340-344, 1913.
[4] M. S. Whittingham, "Electrical energy storage and intercalation chemistry," vol. 192, no. 4244, pp. 1126-1127, 1976.
[5] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density," vol. 15, no. 6, pp. 783-789, 1980.
[6] 電池中國網, "鋰電池的發展進程、發展前景與電池應用," 2017.
[7] 陳金銘, "電動車動力鋰電池材料技術趨勢," 2011.
[8] 林振華、林振富, "充電式鋰離子電池之材料應用."
[9] M. Garside. (2020). Projection of worldwide lithium demand for batteries from 2019 to 2030 , by type. Available: https://www.statista.com/statistics/452010/projected-demand-for-lithium-in-batteries-by-type-globally/
[10] P. Krivik and P. Baca, "Electrochemical energy storage," 2013.
[11] M.-H. Lin, "Investigation on structural deterioration mechanisms and performance enhancement of electrode materials for high energy lithium ion batteries," NTUST thesis, 2016.
[12] N. Omar, M. Daowd, P. v. d. Bossche, O. Hegazy, J. Smekens, T. Coosemans, and J. v. Mierlo, "Rechargeable energy storage systems for plug-in hybrid electric vehicles—Assessment of electrical characteristics," vol. 5, no. 8, pp. 2952-2988, 2012.
[13] D. Choi, W. Wang, and Z. Yang, "Material challenges and perspectives," vol. 1, 2011.
[14] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, "LixCoO2 (0< x⩽ 1): A new cathode material for batteries of high energy density," Solid State Ionics, vol. 3, pp. 171-174, 1981.
[15] J. N. Reimers and J. Dahn, "Electrochemical and in situ X‐ray diffraction studies of lithium intercalation in LixCoO2," Journal of The Electrochemical Society, vol. 139, no. 8, pp. 2091-2097, 1992.
[16] H. Xia, S. Y. Meng, L. Lu, and G. Ceder, "Electrochemical Behavior and Li Diffusion Study of LiCoO₂ Thin Film Electrodes Prepared by PLD," 2007.
[17] L. D. Dyer, B. S. Borie Jr, and G. P. Smith, "Alkali metal-nickel oxides of the type MNiO2," vol. 76, no. 6, pp. 1499-1503, 1954.
[18] J. Dahn, U. Von Sacken, M. Juzkow, and H. Al‐Janaby, "Rechargeable LiNiO2/carbon cells," vol. 138, no. 8, p. 2207, 1991.
[19] J. Dahn, U. von Sacken, and C. Michal, "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure," vol. 44, no. 1-2, pp. 87-97, 1990.
[20] P. Kalyani, N. Kalaiselvi, and N. Renganathan, "Microwave-assisted synthesis of LiNiO2—a preliminary investigation," Journal of power sources, vol. 123, no. 1, pp. 53-60, 2003.
[21] M. Broussely, F. Perton, P. Biensan, J. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J. Peres, "LixNiO2, a promising cathode for rechargeable lithium batteries," vol. 54, no. 1, pp. 109-114, 1995.
[22] P. Kalyani and N. Kalaiselvi, "Various aspects of LiNiO2 chemistry: A review," Science and Technology of Advanced Materials, vol. 6, no. 6, p. 689, 2005.
[23] M.M.Thackeray, W.I.F.David, P.G.Bruce, and J.B.Goodenough, "Lithium insertion into manganese spinels," Mat. Res. Bull., 1983.
[24] F. Mao, W. Guo, and J. Ma, "Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes," vol. 5, no. 127, pp. 105248-105258, 2015.
[25] S.-T. Myung, K. Amine, and Y.-K. Sun, "Nanostructured cathode materials for rechargeable lithium batteries," vol. 283, pp. 219-236, 2015.
[26] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, and J. Chen, "Nanostructured Mn-based oxides for electrochemical energy storage and conversion," vol. 44, no. 3, pp. 699-728, 2015.
[27] H. A. Jahn and E. Teller, "Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy," Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1937.
[28] J. B. Goodenough and A. L. Loeb, "Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels," Physical Review, vol. 98, no. 2, pp. 391-408, 1955.
[29] C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "Comparative issues of cathode materials for Li-ion batteries," vol. 2, no. 1, pp. 132-154, 2014.
[30] D. Aurbach, M. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, and R. Oesten, "Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques," vol. 81, pp. 472-479, 1999.
[31] Y. Xia, Y. Zhou, and M. Yoshio, "Capacity fading on cycling of 4 V Li/LiMn2O4 Cells," vol. 144, no. 8, p. 2593, 1997.
[32] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, and Y. K. Sun, "Comparative Study of LiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332," Chemistry of Materials, vol. 16, no. 5, pp. 906-914, 2004.
[33] J. Molenda, J. Marzec, K. S. wierczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, and R. Dziembaj, "The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel," Solid State Ionics, vol. 171, no. 3-4, pp. 215-227, 2004.
[34] T. Ohzuku, S. Takeda, and M. Iwanaga, "Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me 3d-transition metal) having spinel-framework structures a series of 5 volt materials for advanced lithium-ion batteries," Journal of Power Sources, 1999.
[35] T. Zhang, D. Li, Z. Tao, and J. Chen, "Understanding electrode materials of rechargeable lithium batteries via DFT calculations," vol. 23, no. 3, pp. 256-272, 2013.
[36] A. Yamada, "Systematic Studies on “Abundant” Battery Materials: Identification and Reaction Mechanisms," vol. 84, no. 9, pp. 654-661, 2016.
[37] F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Recent advances and remaining challenges for lithium ion battery cathodes," vol. 164, no. 1, p. A6220, 2016.
[38] J. Li, N. Zhang, H. Li, A. Liu, Y. Wang, S. Yin, H. Wu, and J. Dahn, "Impact of the Synthesis Conditions on the Performance of LiNixCoyAlzO2 with High Ni and Low Co Content," vol. 165, no. 14, p. A3544, 2018.
[39] 旺材鋰電. (2018). 高鎳這麼火,三元鋰電池鎳含量提高有什麼影響?. Available: https://kknews.cc/zh-tw/news/nrqj5aq.html
[40] C.-c. Pan, C. E. Banks, W.-x. Song, C.-w. Wang, Q.-y. Chen, and X.-b. Ji, "Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries," vol. 23, no. 1, pp. 108-119, 2013.
[41] N. Bensalah and H. Dawood, "Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries," 2016.
[42] W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries," Angewandte Chemie International Edition, vol. 54, no. 15, pp. 4440-4457, 2015.
[43] T. Ohzuku and Y. Makimura, "Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries," vol. 30, no. 7, pp. 642-643, 2001.
[44] H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, "Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries," Journal of power sources, vol. 233, pp. 121-130, 2013.
[45] H. H. Li, N. Yabuuchi, Y. S. Meng, S. Kumar, J. Breger, C. P. Grey, and Y. Shao-Horn, "Changes in the Cation Ordering of Layered O3 LixNi0. 5Mn0. 5O2 during Electrochemical Cycling to High Voltages: An Electron Diffraction Study," Chemistry of materials, vol. 19, no. 10, pp. 2551-2565, 2007.
[46] J. Dahn, U. von Sacken, and C. Michal, "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure," Solid State Ionics, vol. 44, no. 1-2, pp. 87-97, 1990.
[47] S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S. D. Senanayake, S.-J. Cho, K.-B. Kim, K. Y. Chung, X.-Q. Yang, and K.-W. Nam, "Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy," vol. 6, no. 24, pp. 22594-22601, 2014.
[48] Y. Wang, J. Jiang, and J. Dahn, "The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0. 8Co0. 15Al0. 05)O2 or LiCoO2 with non-aqueous electrolyte," vol. 9, no. 10, pp. 2534-2540, 2007.
[49] H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, "Characterization and cathode performance of Li1− xNi1+ xO2 prepared with the excess lithium method," vol. 80, no. 3-4, pp. 261-269, 1995.
[50] J. Eom, M. G. Kim, and J. Cho, "Storage characteristics of LiNi0. 8Co0. 1+ x Mn0. 1− xO2 (x= 0, 0.03, and 0.06) cathode materials for lithium batteries," vol. 155, no. 3, p. A239, 2008.
[51] P. Hou, J. Yin, M. Ding, J. Huang, and X. Xu, "Surface/Interfacial Structure and Chemistry of High‐Energy Nickel‐Rich Layered Oxide Cathodes: Advances and Perspectives," vol. 13, no. 45, p. 1701802, 2017.
[52] W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel‐rich layered lithium transition‐metal oxide for high‐energy lithium‐ion batteries," vol. 54, no. 15, pp. 4440-4457, 2015.
[53] W. Cho, S.-M. Kim, J. H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim, and Y.-J. Kim, "Improved electrochemical and thermal properties of nickel rich LiNi0. 6Co0. 2Mn0. 2O2 cathode materials by SiO2 coating," Journal of Power Sources, vol. 282, pp. 45-50, 2015.
[54] F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2," Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6220-A6228, 2017.
[55] H. Liu, M. Wolf, K. Karki, Y.-S. Yu, E. A. Stach, J. Cabana, K. W. Chapman, and P. J. Chupas, "Intergranular cracking as a major cause of long-term capacity fading of layered cathodes," Nano letters, vol. 17, no. 6, pp. 3452-3457, 2017.
[56] H.-H. Ryu, K.-J. Park, C. S. Yoon, and Y.-K. Sun, "Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6≤ x≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation?," Chemistry of Materials, vol. 30, no. 3, pp. 1155-1163, 2018.
[57] S. Xia, L. Mu, Z. Xu, J. Wang, C. Wei, L. Liu, P. Pianetta, K. Zhao, X. Yu, and F. Lin, "Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries," Nano energy, vol. 53, pp. 753-762, 2018.
[58] D. J. Miller, C. Proff, J. Wen, D. P. Abraham, and J. Bareno, "Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy," Advanced Energy Materials, vol. 3, no. 8, pp. 1098-1103, 2013.
[59] G. G. Amatucci and J.-M. Tarascon, "Rechargeable battery cell having surface-treated lithiated intercalation positive electrode," ed: Google Patents, 1998.
[60] Z. Chen and J. Dahn, "Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V," vol. 49, no. 7, pp. 1079-1090, 2004.
[61] G. Song, "Recent progress in corrosion and protection of magnesium alloys," Advanced engineering materials, vol. 7, no. 7, pp. 563-586, 2005.
[62] D. Zuo, G. Tian, X. Li, D. Chen, and K. Shu, "Recent progress in surface coating of cathode materials for lithium ion secondary batteries," Journal of Alloys and Compounds, vol. 706, pp. 24-40, 2017.
[63] J. Cho, Y. J. Kim, and B. Park, "Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell," vol. 12, no. 12, pp. 3788-3791, 2000.
[64] B.-J. Hwang, S.-K. Hu, C.-H. Chen, C.-Y. Chen, and H.-S. Sheu, "In-situ XRD investigations on structure changes of ZrO2-coated LiMn0. 5Ni0. 5O2 cathode materials during charge," vol. 174, no. 2, pp. 761-765, 2007.
[65] S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, and R. Santhanam, "Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries," vol. 188, no. 2, pp. 564-569, 2009.
[66] B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong, and Z. Jiao, "Morphology and electrical properties of carbon coated LiFePO4 cathode materials," vol. 189, no. 1, pp. 462-466, 2009.
[67] J. S. Park, X. Meng, J. W. Elam, S. Hao, C. Wolverton, C. Kim, and J. Cabana, "Ultrathin lithium-ion conducting coatings for increased interfacial stability in high voltage lithium-ion batteries," Chemistry of Materials, vol. 26, no. 10, pp. 3128-3134, 2014.
[68] A. Aboulaich, K. Ouzaouit, H. Faqir, A. Kaddami, I. Benzakour, and I. Akalay, "Improving thermal and electrochemical performances of LiCoO2 cathode at high cut-off charge potentials by MF3 (M= Ce, Al) coating," Materials Research Bulletin, vol. 73, pp. 362-368, 2016.
[69] J. Huang, X. Fang, Y. Wu, L. Zhou, Y. Wang, Y. Jin, W. Dang, L. Wu, Z. Rong, and X. Chen, "Enhanced electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 by surface modification with lithium-active MoO3," vol. 823, pp. 359-367, 2018.
[70] L. Zheng, T. Hatchard, and M. Obrovac, "A high-quality mechanofusion coating for enhancing lithium-ion battery cathode material performance," MRS Communications, vol. 9, no. 1, pp. 245-250, 2019.
[71] L. Zheng, C. Wei, M. Garayt, J. MacInnis, and M. Obrovac, "Spherically Smooth Cathode Particles by Mechanofusion Processing," Journal of The Electrochemical Society, vol. 166, no. 13, p. A2924, 2019.
[72] 林幸慧, "車用鋰電池正極材料發展趨勢," 材料世界網, 2018.
[73] W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries," Angew Chem Int Ed Engl, vol. 54, no. 15, pp. 4440-57, Apr 7 2015.
[74] F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Review-Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes," Journal of The Electrochemical Society, 2017.
[75] W. J. Lin, M. Hirayama, K. Suzuki, and R. Kanno, "Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries," Solid State Ionics, vol. 285, pp. 136-142, 2016.
[76] H. Hsin-Fu, "In-situ Raman Investigation on Lithium-rich Layered Cathode Materials and STOBA Additives upon Cycling," NTUST thesis, 2015.
[77] "Charging Lithium-ion," Battery University, 2018.
[78] T. Warwick, "Battery Testing with EIS (Electrochemical Impedance Spectroscopy)," Blue scientific, 2015.
[79] L.-j. Li, X.-h. Li, Z.-x. Wang, H.-j. Guo, P. Yue, W. Chen, and L. Wu, "A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery," Powder Technology, vol. 206, no. 3, pp. 353-357, 2011.
[80] S. Verdier, L. E. Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan, and D. Gonbeau, "XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries," Journal of The Electrochemical Society, 2007.
[81] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
[82] S. Fang, D. Jackson, M. L. Dreibelbis, T. F. Kuech, and R. J. Hamers, "Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer," Journal of Power Sources, vol. 373, pp. 184-192, 2018.

無法下載圖示 全文公開日期 2025/08/26 (校內網路)
全文公開日期 2025/08/26 (校外網路)
全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE