簡易檢索 / 詳目顯示

研究生: 張妤甄
Yu-Chen Chang
論文名稱: 可控制異質摻雜奈米碳材製備及其表面增強拉曼光譜應用
Facile and Controllable Heteroatom-Doped Carbon Nanomaterials under Atmospheric Pressure toward SERS Application
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 何國川
Kuo-Chuan Ho
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 120
中文關鍵詞: 異質摻雜奈米碳管表面增強拉曼訊號
外文關鍵詞: Heteroatom-doped, carbon nanotubes, SERS
相關次數: 點閱:423下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

異質摻雜奈米碳材能提升奈米碳材許多特性,譬如物理、化學、光學、結構特性,使奈米碳材能廣泛應用在電子元件、催化劑、除能裝置、複合材料及生醫方面等應用。然而,現今的摻雜方法通常需要複雜的真空系統,造成成本極高且無法量產,因此,能發展出在大氣常壓下且可控制的異質摻雜奈米碳材技術不僅可提升科學研究水準且更能廣泛應用在不同需求上。本研究發展出一在大氣常壓下前處理異質摻雜奈米碳材的合成方法,並成功分別摻雜硼、硫、氮及磷等元素於奈米碳管中。
此篇論文主要分為以下部分:第一章為摻雜奈米碳材介紹及文獻回顧,包含合成、特性改變、摻雜奈米碳材的相關應用及實驗動機;第二章詳細描述實驗流程及各種分析儀器包括X光光電子能譜、拉曼光譜、穿透式電子顯微鏡、掃描式電子顯微鏡、紫外光光電子能譜等等的規格及分析條件;第三章將討論硫元素摻雜多壁奈米碳管後的材料分析比較和摻雜後導電性、分散特性的提升及原因;此研究方法的相關延伸將敘述於第四章,不僅能和特定元素於多壁奈米碳管,包括硼、氮、磷等元素皆已實驗成功,而奈米碳材的選擇也非常多元,摻雜單壁碳管、石墨烯及石墨烯奈米帶亦適用此合成方法;最後硫摻雜多壁奈米碳管應用在表面增強拉曼訊號相關討論及結果討論將呈現在第五章。


Heteroatom doping can endow carbon nanomaterials with various enhanced optical, structural, and physicochemical properties, making carbon nanomaterials become a promising material in various applications including nanoelectronics, catalysis, energy storage, functional composites, and biomedical applications. However, current synthesis methods usually involve complicated vacuum systems, making it difficult to enable industrial-scale production. Consequently, the development of a controllable synthesis of heteroatom-doped carbon nanomaterials at atmospheric pressure will lead to important advances on both scientific studies and innovation applications. Therefore, we demonstrate a wet-chemistry-assisted pretreatment substitution method to produce heteroatom-doped carbon nanomaterial with varying heteroatoms including boron (B), sulfur (S), nitrogen (N) and phosphorus (P), which is under atmospheric pressure.
The thesis is organized in follows. Chapter 1 gives an introduction to the heteroatom-doped carbon nanomaterials. It provides a brief historical overview of synthesis, properties, and related applications of heteroatom-doped carbon nanomaterials. Chapter 2 describes the experimental set up and several characterization methods has been used. Chapter 3 discusses the properties of multi-walled carbon nanotubes (MWNTs) doped with sulfur atoms, including the increasing of conductivity and dispersion. Chapter 4 shows the extension of our proposed method, it is widely used on different kind of precursors doped on also graphene and related materials. Furthermore, the as-prepared sulfur-doped MWNTs shows the potential for surface enhanced Raman spectroscopy (SERS) substrate, which is discussed in chapter 5.

Abstract II Acknowledgements III Table of contents V List of figures VII List of tables XII 1. Introduction 1 1.1. History of heteroatom-doped carbon nanomaterials 1 1.2. Synthesis of heteroatom-doped carbon nanomaterials 5 1.2.1 In situ doping 8 1.2.2 Post-treatment 13 1.3. Properties of heteroatom-doped carbon nanomaterials 19 1.4. Emerging applications of heteroatom-doped carbon nanomaterials 23 1.4.1 Electrochemical applications 23 1.4.2 Composites 32 1.4.3 Sensors 34 1.5. Motivation of heteroatom-doped carbon nanomaterials by wet-chemistry-assist pretreatment substitution reaction 36 2. Experimental Section 37 2.1. Materials and chemicals 37 2.2. Synthesis of sulfur-doped multi-walled carbon nanotube 37 2.3. Fabrication of conductive paper 39 2.4. Synthesis of CNT/silver nanoparticles composites 39 2.5. Fabrication of SERS substrates 40 2.6. Characterization 41 2.6.1. X-ray photoelectron spectroscopy (XPS) 41 2.6.2. Raman spectroscopy 41 2.6.3. Scanning electron microscope (SEM) 41 2.6.4. High-resolution transmission electron microscopy (HRTEM) & Transmission electron microscopy (TEM) 42 2.6.5. Ultraviolet-visible spectroscopy (UV-vis) 42 2.6.6. Four point probe resistivity measurement 42 2.6.7. Ultraviolet Photoelectron Yield Spectroscopy (UPYS) 43 3. Results and Discussion 44 3.1. XPS characterization 44 3.2. Raman spectroscopy characterization 54 3.3. SEM & TEM characterizations 58 3.4. Electrical conductivity measurement 61 3.5. Dispersibility measurement 64 4. Extension 67 4.1. Multi-walled carbon nanotubes doped with various heteroatoms 67 4.2. Various carbon nanomaterials doped with S 72 4.3. Summary 75 5. Surface-Enhanced Raman Scattering 76 5.1. Introduction of Surface-enhanced Raman scattering (SERS) 76 5.1.1. Carbon nanomaterials as SERS-active substrates 77 5.2. S-doped MWNT/Ag NPs composite as SERS-active substrate 80 6. Conclusion 88

[1] A. Peigney, C. Laurent, E. Flahaut, R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39 (2001) 507-514.
[2] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature materials 6 (2007) 183-191.
[3] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457 (2009) 706-710.
[4] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, science 306 (2004) 666-669.
[5] M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640.
[6] S. Berber, Y.-K. Kwon, D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Physical review letters 84 (2000) 4613.
[7] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two-dimensional phonon transport in supported graphene, Science 328 (2010) 213-216.
[8] F. Xia, D.B. Farmer, Y.-m. Lin, P. Avouris, Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature, Nano letters 10 (2010) 715-718.
[9] A. Geim, Nature Mater. 6, 183 (2007); AH Castro Neto, F. Guinea, NMR Peres, KS Novoselov, and AK Geim, Rev. Mod. Phys 81 (2009) 109.
[10] W. Kiciński, M. Szala, M. Bystrzejewski, Sulfur-doped porous carbons: synthesis and applications, Carbon 68 (2014) 1-32.
[11] Y. Xue, B. Wu, Y. Guo, L. Huang, L. Jiang, J. Chen, D. Geng, Y. Liu, W. Hu, G. Yu, Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition, Nano Research 4 (2011) 1208-1214.
[12] X. Li, T. Tang, M. Li, X. He, Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors, Applied Physics Letters 106 (2015) 013110.
[13] G. Zou, H. Luo, S. Baily, Y. Zhang, N. Haberkorn, J. Xiong, E. Bauer, T. McCleskey, A. Burrell, L. Civale, Highly aligned carbon nanotube forests coated by superconducting NbC, Nature communications 2 (2011) 428.
[14] A.B. Dalton, S. Collins, E. Muñoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres, Nature 423 (2003) 703-703.
[15] W.J. Lee, J.M. Lee, S.T. Kochuveedu, T.H. Han, H.Y. Jeong, M. Park, J.M. Yun, J. Kwon, K. No, D.H. Kim, Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis, ACS nano 6 (2011) 935-943.
[16] M. Terrones, A.G. Souza Filho, A.M. Rao, Doped carbon nanotubes: synthesis, characterization and applications, Carbon nanotubes, Springer2007, pp. 531-566.
[17] Y. Fang, B. Luo, Y. Jia, X. Li, B. Wang, Q. Song, F. Kang, L. Zhi, Renewing Functionalized Graphene as Electrodes for High‐Performance Supercapacitors, Advanced Materials 24 (2012) 6348-6355.
[18] S.K. Hwang, J.M. Lee, S. Kim, J.S. Park, H.I. Park, C.W. Ahn, K.J. Lee, T. Lee, S.O. Kim, Flexible multilevel resistive memory with controlled charge trap B-and N-doped carbon nanotubes, Nano letters 12 (2012) 2217-2221.
[19] K.S. Rao, J. Senthilnathan, J.-M. Ting, M. Yoshimura, Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications, Nanoscale 6 (2014) 12758-12768.
[20] J. Senthilnathan, K.S. Rao, W.-H. Lin, J.-M. Ting, M. Yoshimura, Formation of reusable Au-acetonitrile polymers and N-doped graphene catalyst under UV light via submerged liquid plasma process, Journal of Materials Chemistry A 3 (2015) 3035-3043.
[21] X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis, Chemical Society Reviews 43 (2014) 2841-2857.
[22] J. Shui, M. Wang, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science advances 1 (2015) e1400129.
[23] V.J. González, E. Gracia-Espino, A. Morelos-Gómez, F. López-Urías, H. Terrones, M. Terrones, Biotin molecules on nitrogen-doped carbon nanotubes enhance the uniform anchoring and formation of Ag nanoparticles, Carbon 88 (2015) 51-59.
[24] J. Borowiec, R. Wang, L. Zhu, J. Zhang, Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol, Electrochimica Acta 99 (2013) 138-144.
[25] Z.-S. Wu, W. Ren, L. Xu, F. Li, H.-M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries, ACS nano 5 (2011) 5463-5471.
[26] Z. Ma, S. Dou, A. Shen, L. Tao, L. Dai, S. Wang, Sulfur‐Doped Graphene Derived from Cycled Lithium–Sulfur Batteries as a Metal‐Free Electrocatalyst for the Oxygen Reduction Reaction, Angewandte Chemie International Edition 54 (2015) 1888-1892.
[27] A.J. Samuels, J.D. Carey, Molecular doping and band-gap opening of bilayer graphene, Acs Nano 7 (2013) 2790-2799.
[28] D. Wei, Y. Liu, Controllable synthesis of graphene and its applications, Advanced Materials 22 (2010) 3225-3241.
[29] D. Li, ller, S. Gilje, RB Kaner, GG Wallace, Nature Nanotech 3 (2008) 101.
[30] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties, Nano letters 9 (2009) 1752-1758.
[31] P. Avouris, Graphene: electronic and photonic properties and devices, Nano letters 10 (2010) 4285-4294.
[32] J.O. Hwang, J.S. Park, D.S. Choi, J.Y. Kim, S.H. Lee, K.E. Lee, Y.-H. Kim, M.H. Song, S. Yoo, S.O. Kim, Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes, Acs Nano 6 (2011) 159-167.
[33] Y. Zhou, A. Gaur, S.-H. Hur, C. Kocabas, M.A. Meitl, M. Shim, J.A. Rogers, P-channel, n-channel thin film transistors and pn diodes based on single wall carbon nanotube networks, Nano Letters 4 (2004) 2031-2035.
[34] M. Kanungo, H. Lu, G.G. Malliaras, G.B. Blanchet, Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions, Science 323 (2009) 234-237.
[35] Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets, Journal of the American Chemical Society 130 (2008) 5856-5857.
[36] U.N. Maiti, W.J. Lee, J.M. Lee, Y. Oh, J.Y. Kim, J.E. Kim, J. Shim, T.H. Han, S.O. Kim, 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices, Advanced Materials 26 (2014) 40-67.
[37] R. Sen, B. Satishkumar, A. Govindaraj, K. Harikumar, M. Renganathan, C. Rao, Nitrogen-containing carbon nanotubes, J. Mater. Chem. 7 (1997) 2335-2337.
[38] W. Han, Y. Bando, K. Kurashima, T. Sato, Boron-doped carbon nanotubes prepared through a substitution reaction, Chemical physics letters 299 (1999) 368-373.
[39] T. Schiros, D. Nordlund, L. Pálová, D. Prezzi, L. Zhao, K.S. Kim, U. Wurstbauer, C. Gutiérrez, D. Delongchamp, C. Jaye, Connecting dopant bond type with electronic structure in N-doped graphene, Nano letters 12 (2012) 4025-4031.
[40] O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study, Physical Review B 77 (2008) 125416.
[41] S. Adam, E. Hwang, V. Galitski, S.D. Sarma, A self-consistent theory for graphene transport, Proceedings of the National Academy of Sciences 104 (2007) 18392-18397.
[42] I. Gierz, C. Riedl, U. Starke, C.R. Ast, K. Kern, Atomic hole doping of graphene, Nano letters 8 (2008) 4603-4607.
[43] H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene, Journal of Materials Chemistry 21 (2011) 3335-3345.
[44] D. Bitounis, H. Ali‐Boucetta, B.H. Hong, D.H. Min, K. Kostarelos, Prospects and challenges of graphene in biomedical applications, Advanced Materials 25 (2013) 2258-2268.
[45] J. Lischner, D. Vigil-Fowler, S.G. Louie, Physical Origin of Satellites in Photoemission of Doped Graphene: An Ab Initio G W Plus Cumulant Study, Physical review letters 110 (2013) 146801.
[46] S. Park, Y. Hu, J.O. Hwang, E.-S. Lee, L.B. Casabianca, W. Cai, J.R. Potts, H.-W. Ha, S. Chen, J. Oh, Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping, Nature communications 3 (2012) 638.
[47] W. Wang, X. Bai, K. Liu, Z. Xu, D. Golberg, Y. Bando, E. Wang, Direct synthesis of BCN single-walled nanotubes by bias-assisted hot filament chemical vapor deposition, Journal of the American Chemical Society 128 (2006) 6530-6531.
[48] T. Sharifi, F. Nitze, H.R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion, Carbon 50 (2012) 3535-3541.
[49] A.A. Koos, F. Dillon, E.A. Obraztsova, A. Crossley, N. Grobert, Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes, Carbon 48 (2010) 3033-3041.
[50] X. Tao, X. Zhang, F. Sun, J. Cheng, F. Liu, Z. Luo, Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a Co x Mg 1− x MoO 4 catalyst, Diamond and related materials 16 (2007) 425-430.
[51] T. Wu, H. Shen, L. Sun, B. Cheng, B. Liu, J. Shen, Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid, New Journal of Chemistry 36 (2012) 1385-1391.
[52] T. Xing, J. Sunarso, W. Yang, Y. Yin, A.M. Glushenkov, L.H. Li, P.C. Howlett, Y. Chen, Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles, Nanoscale 5 (2013) 7970-7976.
[53] I.-Y. Jeon, H.-J. Choi, M.J. Ju, I.T. Choi, K. Lim, J. Ko, H.K. Kim, J.C. Kim, J.-J. Lee, D. Shin, Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion, Scientific reports 3 (2013).
[54] J. Xu, I.Y. Jeon, J.M. Seo, S. Dou, L. Dai, J.B. Baek, Edge‐Selectively Halogenated Graphene Nanoplatelets (XGnPs, X= Cl, Br, or I) Prepared by Ball‐Milling and Used as Anode Materials for Lithium‐Ion Batteries, Advanced materials 26 (2014) 7317-7323.
[55] X. Liu, H. Gutiérrez, P. Eklund, Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films, Journal of Physics: Condensed Matter 22 (2010) 334213.
[56] C. Qi, X. Ma, G. Ning, X. Song, B. Chen, X. Lan, Y. Li, X. Zhang, J. Gao, Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries, Carbon 92 (2015) 245-253.
[57] X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide, Journal of the American Chemical Society 131 (2009) 15939-15944.
[58] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus‐doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Advanced materials 25 (2013) 4932-4937.
[59] Z. Zuo, Z. Jiang, A. Manthiram, Porous B-doped graphene inspired by Fried-Ice for supercapacitors and metal-free catalysts, Journal of Materials Chemistry A 1 (2013) 13476-13483.
[60] Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, Journal of Materials Chemistry 22 (2012) 390-395.
[61] S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, K. Müllen, Efficient synthesis of heteroatom (N or S)‐doped graphene based on ultrathin graphene oxide‐porous silica sheets for oxygen reduction reactions, Advanced Functional Materials 22 (2012) 3634-3640.
[62] H.L. Poh, P. Šimek, Z. Sofer, M. Pumera, Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere, Chemistry–A European Journal 19 (2013) 2655-2662.
[63] P. Wu, Z. Cai, Y. Gao, H. Zhang, C. Cai, Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells, Chemical Communications 47 (2011) 11327-11329.
[64] R. Ballesteros-Garrido, H.G. Baldoví, M. Latorre-Sanchez, M. Alvaro, H. Garcia, Photocatalytic hydrogen generation from water–methanol mixtures using halogenated reconstituted graphenes, Journal of Materials Chemistry A 1 (2013) 11728-11734.
[65] D. Yu, Q. Zhang, L. Dai, Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction, Journal of the American Chemical Society 132 (2010) 15127-15129.
[66] A. Gohel, K. Chin, Y. Zhu, C. Sow, A. Wee, Field emission properties of N 2 and Ar plasma-treated multi-wall carbon nanotubes, Carbon 43 (2005) 2530-2535.
[67] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters 11 (2011) 2472-2477.
[68] C. Wang, Y. Zhou, L. He, T.-W. Ng, G. Hong, Q.-H. Wu, F. Gao, C.-S. Lee, W. Zhang, In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition, Nanoscale 5 (2013) 600-605.
[69] Z. Li, L. Wang, Y. Su, P. Liu, Y. Zhang, Semiconducting single-walled carbon nanotubes synthesized by S-doping, Nano-Micro Letters 1 (2009) 9-13.
[70] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, structure and properties of boron and nitrogen doped graphene, arXiv preprint arXiv:0902.3077 (2009).
[71] N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, S. Xu, Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method, Carbon 48 (2010) 255-259.
[72] W. Choi, J.-w. Lee, Graphene: synthesis and applications, CRC Press2011.
[73] M. Terrones, N. Grobert, J. Olivares, J. Zhang, H. Terrones, K. Kordatos, W. Hsu, J. Hare, P. Townsend, K. Prassides, Controlled production of aligned-nanotube bundles, Nature 388 (1997) 52-55.
[74] M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.K. Hsu, H. Terrones, Y.Q. Zhu, J.P. Hare, C.L. Reeves, A.K. Cheetham, Carbon nitride nanocomposites: formation of aligned CxNy nanofibers, Advanced materials 11 (1999) 655-658.
[75] G. Imamura, K. Saiki, Synthesis of nitrogen-doped graphene on Pt (111) by chemical vapor deposition, The Journal of Physical Chemistry C 115 (2011) 10000-10005.
[76] G. Wu, N.H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J.K. Baldwin, P. Zelenay, Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes, ACS nano 6 (2012) 9764-9776.
[77] C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, C.-H. Chuang, Band gap engineering of chemical vapor deposited graphene by in situ BN doping, ACS nano 7 (2013) 1333-1341.
[78] J. Dai, J. Yuan, Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties, Physical Review B 81 (2010) 165414.
[79] M. Endo, H. Muramatsu, T. Hayashi, Y.-A. Kim, G.V. Lier, J.-C. Charlier, H. Terrones, M. Terrones, M.S. Dresselhaus, Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes, Nano letters 5 (2005) 1099-1105.
[80] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80 (1958) 1339-1339.
[81] Y.Z. Xue, B. Wu, Q.L. Bao, Y.Q. Liu, Controllable Synthesis of Doped Graphene and Its Applications, Small 10 (2014) 2975-2991.
[82] T.V. Khai, H.G. Na, D.S. Kwak, Y.J. Kwon, H. Ham, K.B. Shim, H.W. Kim, Comparison study of structural and optical properties of boron-doped and undoped graphene oxide films, Chemical Engineering Journal 211 (2012) 369-377.
[83] Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.a. Chen, S. Huang, Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS nano 6 (2011) 205-211.
[84] S. Han, D. Wu, S. Li, F. Zhang, X. Feng, Graphene: A Two‐Dimensional Platform for Lithium Storage, Small 9 (2013) 1173-1187.
[85] Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. Müllen, Three‐Dimensional Nitrogen and Boron Co‐doped Graphene for High‐Performance All‐Solid‐State Supercapacitors, Advanced Materials 24 (2012) 5130-5135.
[86] N. Li, Z. Wang, Z. Shi, Synthesis of Graphenes with Arc-Discharge Method, InTech, 2011.
[87] M. Glerup, J. Steinmetz, D. Samaille, O. Stephan, S. Enouz, A. Loiseau, S. Roth, P. Bernier, Synthesis of N-doped SWNT using the arc-discharge procedure, Chemical Physics Letters 387 (2004) 193-197.
[88] L. Huang, B. Wu, J. Chen, Y. Xue, D. Geng, Y. Guo, G. Yu, Y. Liu, Gram‐Scale Synthesis of Graphene Sheets by a Catalytic Arc‐Discharge Method, Small 9 (2013) 1330-1335.
[89] L. Feng, Y. Chen, L. Chen, Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells, ACS nano 5 (2011) 9611-9618.
[90] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene, Advanced Materials 21 (2009) 4726-4730.
[91] Q. Chen, L. Dai, M. Gao, S. Huang, A. Mau, Plasma activation of carbon nanotubes for chemical modification, The Journal of Physical Chemistry B 105 (2001) 618-622.
[92] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS nano 4 (2010) 1790-1798.
[93] P.A. Denis, Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur, Chemical Physics Letters 492 (2010) 251-257.
[94] E. Cruz-Silva, F. Lopez-Urias, E. Munoz-Sandoval, B.G. Sumpter, H. Terrones, J.-C. Charlier, V. Meunier, M. Terrones, Electronic transport and mechanical properties of phosphorus-and phosphorus− nitrogen-doped carbon nanotubes, Acs Nano 3 (2009) 1913-1921.
[95] H. Tavakol, F. Hassani, Adsorption of molecular iodine on the surface of sulfur-doped carbon nanotubes: theoretical study on their interactions, sensor properties, and other applications, Structural Chemistry 26 (2015) 151-158.
[96] C.N.R. Rao, K. Gopalakrishnan, A. Govindaraj, Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements, Nano Today 9 (2014) 324-343.
[97] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, science 306 (2004) 666-669.
[98] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-doping of graphene through electrothermal reactions with ammonia, Science 324 (2009) 768-771.
[99] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties, Nano letters 11 (2011) 5401-5407.
[100] X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324 (2009) 768.
[101] S.J. Goncher, L. Zhao, A.N. Pasupathy, G.W. Flynn, Substrate level control of the local doping in graphene, Nano letters 13 (2013) 1386-1392.
[102] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J.R. Gong, Controllable N-doping of graphene, Nano letters 10 (2010) 4975-4980.
[103] J. Gebhardt, R. Koch, W. Zhao, O. Höfert, K. Gotterbarm, S. Mammadov, C. Papp, A. Görling, H.-P. Steinrück, T. Seyller, Growth and electronic structure of boron-doped graphene, Physical Review B 87 (2013) 155437.
[104] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene, Analytical Chemistry 81 (2009) 2378-2382.
[105] J. Chiou, S.C. Ray, S. Peng, C. Chuang, B. Wang, H. Tsai, C. Pao, H.-J. Lin, Y. Shao, Y. Wang, Nitrogen-functionalized graphene nanoflakes (GNFs: N): tunable photoluminescence and electronic structures, The Journal of Physical Chemistry C 116 (2012) 16251-16258.
[106] A.Z. Yazdi, E.P. Roberts, U. Sundararaj, Nitrogen/sulfur co-doped helical graphene nanoribbons for efficient oxygen reduction in alkaline and acidic electrolytes, Carbon 100 (2016) 99-108.
[107] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Li Storage Properties of Disordered Graphene Nanosheets, Chemistry of Materials 21 (2009) 3136-3142.
[108] I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. Hsu, H. Touhara, Electrochemical Li insertion in B-doped multiwall carbon nanotubes, Journal of the Electrochemical Society 149 (2002) A39-A44.
[109] W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity, Nano letters 12 (2012) 2283-2288.
[110] X. Wang, Z. Zeng, H. Ahn, G. Wang, First-principles study on the enhancement of lithium storage capacity in boron doped graphene, Applied Physics Letters 95 (2009) 183103.
[111] A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, P.M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, Acs Nano 4 (2010) 6337-6342.
[112] W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du, Z. Fan, L. Xie, H. Zhang, W. Huang, T. Yu, Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High‐Performance Li‐Ion Batteries and Oxygen Reduction Reaction, Advanced Materials (2014).
[113] L.-F. Chen, X.-D. Zhang, H.-W. Liang, M. Kong, Q.-F. Guan, P. Chen, Z.-Y. Wu, S.-H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS nano 6 (2012) 7092-7102.
[114] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage, Journal of the Electrochemical Society 138 (1991) 1539-1548.
[115] K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Supercapacitors using single-walled carbon nanotube electrodes, Advanced Materials 13 (2001) 497-500.
[116] S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three‐Dimensional Self‐Assembly of Graphene Oxide Platelets into Mechanically Flexible Macroporous Carbon Films, Angewandte Chemie 122 (2010) 10282-10286.
[117] T. Zhu, J. Zhou, Z. Li, S. Li, W. Si, S. Zhuo, Hierarchical porous and N-doped carbon nanotubes derived from polyaniline for electrode materials in supercapacitors, Journal of Materials Chemistry A 2 (2014) 12545-12551.
[118] T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh, High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes, ACS nano 5 (2010) 436-442.
[119] Z. Lei, L. Lu, X. Zhao, The electrocapacitive properties of graphene oxide reduced by urea, Energy & Environmental Science 5 (2012) 6391-6399.
[120] H.-L. Guo, P. Su, X. Kang, S.-K. Ning, Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents, Journal of Materials Chemistry A 1 (2013) 2248-2255.
[121] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, Journal of Materials Chemistry 21 (2011) 8038-8044.
[122] Y. Qiu, X. Zhang, S. Yang, High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets, Physical Chemistry Chemical Physics 13 (2011) 12554-12558.
[123] J. Han, L.L. Zhang, S. Lee, J. Oh, K.-S. Lee, J.R. Potts, J. Ji, X. Zhao, R.S. Ruoff, S. Park, Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications, ACS nano 7 (2012) 19-26.
[124] Y. Yu, Y. Hu, X. Liu, W. Deng, X. Wang, The study of Pt@ Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement, Electrochimica Acta 54 (2009) 3092-3097.
[125] S. Sun, C. Murray, D. Weller, L. Folks, A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287 (2000) 1989-1992.
[126] N. Kristian, Y. Yan, X. Wang, Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation, Chemical Communications (2008) 353-355.
[127] N. Kristian, Y. Yu, P. Gunawan, R. Xu, W. Deng, X. Liu, X. Wang, Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation, Electrochimica Acta 54 (2009) 4916-4924.
[128] Y. Wang, T.S. Nguyen, X. Liu, X. Wang, Novel palladium–lead (Pd–Pb/C) bimetallic catalysts for electrooxidation of ethanol in alkaline media, Journal of Power Sources 195 (2010) 2619-2622.
[129] P. Serp, M. Corrias, P. Kalck, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A: General 253 (2003) 337-358.
[130] S. Maldonado, K.J. Stevenson, Influence of Nitrogen Doping on Oxygen Reduction Electrocatalysis at Carbon Nanofiber Electrodes, The Journal of Physical Chemistry B 109 (2005) 4707-4716.
[131] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, ACS Nano 4 (2010) 1321-1326.
[132] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry 20 (2010) 7491-7496.
[133] H. Wang, T. Maiyalagan, X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications, ACS Catalysis 2 (2012) 781-794.
[134] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, science 323 (2009) 760-764.
[135] L. Zhang, Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells, The Journal of Physical Chemistry C 115 (2011) 11170-11176.
[136] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygen-reduction activity and durability of nitrogen-doped graphene, Energy & Environmental Science 4 (2011) 760-764.
[137] Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Three-dimensional B, N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction, Physical Chemistry Chemical Physics 15 (2013) 12220-12226.
[138] A.M. El‐Sawy, I.M. Mosa, D. Su, C.J. Guild, S. Khalid, R. Joesten, J.F. Rusling, S.L. Suib, Controlling the Active Sites of Sulfur‐Doped Carbon Nanotube–Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis, Advanced Energy Materials (2015).
[139] P. Matter, U. Ozkan, Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte, Catalysis Letters 109 (2006) 115-123.
[140] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, Journal of Power Sources 188 (2009) 38-44.
[141] X. Bao, X. Nie, D. von Deak, E.J. Biddinger, W. Luo, A. Asthagiri, U.S. Ozkan, C.M. Hadad, A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites, Topics in Catalysis 56 (2013) 1623-1633.
[142] M. McCune, W. Zhang, Y. Deng, High Efficiency Dye-Sensitized Solar Cells Based on Three-Dimensional Multilayered ZnO Nanowire Arrays with “Caterpillar-like” Structure, Nano Letters 12 (2012) 3656-3662.
[143] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochemistry Communications 10 (2008) 1555-1558.
[144] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society 153 (2006) A2255-A2261.
[145] H. Han, U. Bach, Y.-B. Cheng, R.A. Caruso, C. MacRae, A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode, Applied Physics Letters 94 (2009) 103102.
[146] Z. Yang, T. Chen, R. He, G. Guan, H. Li, L. Qiu, H. Peng, Aligned carbon nanotube sheets for the electrodes of organic solar cells, Advanced Materials 23 (2011) 5436-5439.
[147] H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition, Journal of Materials Chemistry 21 (2011) 7548-7551.
[148] R. Jia, J. Chen, J. Zhao, J. Zheng, C. Song, L. Li, Z. Zhu, Synthesis of highly nitrogen-doped hollow carbon nanoparticles and their excellent electrocatalytic properties in dye-sensitized solar cells, Journal of Materials Chemistry 20 (2010) 10829-10834.
[149] J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.-Y. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells, Acs Nano 4 (2010) 3503-3509.
[150] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano 4 (2010) 6203-6211.
[151] D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells, Carbon 49 (2011) 5382-5388.
[152] C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Advanced Functional Materials 19 (2009) 2577-2583.
[153] Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu, L. Dai, Nitrogen‐Doped Graphene Foams as Metal‐Free Counter Electrodes in High‐Performance Dye‐Sensitized Solar Cells, Angewandte Chemie International Edition 51 (2012) 12124-12127.
[154] D. Yu, E. Nagelli, F. Du, L. Dai, Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer, The Journal of Physical Chemistry Letters 1 (2010) 2165-2173.
[155] S. Yang, X. Feng, X. Wang, K. Müllen, Graphene‐Based Carbon Nitride Nanosheets as Efficient Metal‐Free Electrocatalysts for Oxygen Reduction Reactions, Angewandte Chemie International Edition 50 (2011) 5339-5343.
[156] H. Park, J.A. Rowehl, K.K. Kim, V. Bulovic, J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology 21 (2010) 505204.
[157] X. Zheng, J. Deng, N. Wang, D. Deng, W.H. Zhang, X. Bao, C. Li, Podlike N‐Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: High‐Performance Counter Electrode Materials for Dye‐Sensitized Solar Cells, Angewandte Chemie International Edition 53 (2014) 7023-7027.
[158] N. Soin, S. Sinha Roy, S. Roy, K.S. Hazra, D.S. Misra, T.H. Lim, C.J. Hetherington, J.A. McLaughlin, Enhanced and stable field emission from in situ nitrogen-doped few-layered graphene nanoflakes, The Journal of Physical Chemistry C 115 (2011) 5366-5372.
[159] W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin, Large current density from carbon nanotube field emitters, Applied Physics Letters 75 (1999) 873-875.
[160] Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. Feng, Carbon nanowalls and related materials, Journal of Materials Chemistry 14 (2004) 469-477.
[161] J. Li, C. Gu, Q. Wang, P. Xu, Z. Wang, Z. Xu, X. Bai, Field emission from high aspect ratio tubular carbon cones grown on gold wire, Applied Physics Letters 87 (2005) 143107.
[162] G.A. Amaratunga, S. Silva, Nitrogen containing hydrogenated amorphous carbon for thin‐film field emission cathodes, Applied Physics Letters 68 (1996) 2529-2531.
[163] A. Malesevic, R. Kemps, A. Vanhulsel, M.P. Chowdhury, A. Volodin, C. Van Haesendonck, Field emission from vertically aligned few-layer graphene, Journal of applied physics 104 (2008) 084301.
[164] Z.S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, Field emission of single‐layer graphene films prepared by electrophoretic deposition, Advanced Materials 21 (2009) 1756-1760.
[165] U. Palnitkar, R.V. Kashid, M.A. More, D.S. Joag, L. Panchakarla, C. Rao, Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-doped graphene, Applied Physics Letters 97 (2010) 063102.
[166] H.-S. Ahn, K.-R. Lee, D.-Y. Kim, S. Han, Field emission of doped carbon nanotubes, Applied physics letters 88 (2006) 093122.
[167] R. Sharma, D. Late, D. Joag, A. Govindaraj, C. Rao, Field emission properties of boron and nitrogen doped carbon nanotubes, Chemical physics letters 428 (2006) 102-108.
[168] R.V. Kashid, M.Z. Yusop, C. Takahashi, G. Kalita, L.S. Panchakarla, D.S. Joag, M.A. More, M. Tanemura, Field emission characteristics of pristine and N-doped graphene measured by in-situ transmission electron microscopy, Journal of Applied Physics 113 (2013) 214311.
[169] J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, J.K. Kim, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Advanced Functional Materials 17 (2007) 3207-3215.
[170] W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology 69 (2009) 1486-1498.
[171] T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites, Progress in Polymer Science 35 (2010) 1350-1375.
[172] S.D. Sarma, S. Adam, E. Hwang, E. Rossi, Electronic transport in two-dimensional graphene, Reviews of Modern Physics 83 (2011) 407.
[173] S. Huang, L. Dai, A.W.H. Mau, J. Phys. Chem. B 103 (1999) 4223.
[174] Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites, Composites Science and Technology 68 (2008) 1644-1648.
[175] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters 8 (2008) 902-907.
[176] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, Strong, transparent, multifunctional, carbon nanotube sheets, Science 309 (2005) 1215-1219.
[177] X.M. Liu, H.E. Romero, H.R. Gutierrez, K. Adu, P.C. Eklund, Transparent Boron-Doped Carbon Nanotube Films, Nano Letters 8 (2008) 2613-2619.
[178] J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites, Carbon 47 (2009) 922-925.
[179] H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough Graphene−Polymer Microcellular Foams for Electromagnetic Interference Shielding, ACS Applied Materials & Interfaces 3 (2011) 918-924.
[180] A.K. Geim, Graphene: status and prospects, science 324 (2009) 1530-1534.
[181] H. Huang, C. Liu, Y. Wu, S. Fan, Aligned carbon nanotube composite films for thermal management, Advanced materials 17 (2005) 1652-1656.
[182] J. Lee, T. Cocke, F. Gonzalez, Regional vs" tight" heparinization in hemodialysis, Proceedings of the Clinical Dialysis and Transplant Forum, 1974, pp. 239.
[183] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.
[184] RamanathanT, A.A. Abdala, StankovichS, D.A. Dikin, M. Herrera Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, ChenX, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud'Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nat Nano 3 (2008) 327-331.
[185] K. Gopalakrishnan, H.M. Joshi, P. Kumar, L. Panchakarla, C. Rao, Selectivity in the photocatalytic properties of the composites of TiO 2 nanoparticles with B-and N-doped graphenes, Chemical Physics Letters 511 (2011) 304-308.
[186] B. Fragneaud, K. Masenelli-Varlot, A. Gonzalez-Montiel, M. Terrones, J.-Y. Cavaillé, Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization, Chemical physics letters 419 (2006) 567-573.
[187] B. Fragneaud, K. Masenelli-Varlot, A. González-Montiel, M. Terrones, J.-Y. Cavaillé, Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes, Chemical physics letters 444 (2007) 1-8.
[188] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000) 622-625.
[189] S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature 394 (1998) 52-55.
[190] F. Villalpando-Paez, A. Romero, E. Muñoz-Sandoval, L. Martınez, H. Terrones, M. Terrones, Selected absorption behavior of sulfur on single-walled carbon nanotubes by DFT, Chemical Physics Letters 386 (2004) 137.
[191] H. Fan, Y. Li, D. Wu, H. Ma, K. Mao, D. Fan, B. Du, H. Li, Q. Wei, Electrochemical bisphenol A sensor based on N-doped graphene sheets, Analytica chimica acta 711 (2012) 24-28.
[192] B.L. Allen, P.D. Kichambare, A. Star, Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors, Advanced Materials 19 (2007) 1439-1451.
[193] S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon nanotubes for electronic and electrochemical detection of biomolecules, Advanced materials 19 (2007) 3214-3228.
[194] Q. He, S. Wu, Z. Yin, H. Zhang, Graphene-based electronic sensors, Chemical Science 3 (2012) 1764-1772.
[195] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-Layered Graphene Oxide Nanosheets As Superior Sorbents for Heavy Metal Ion Pollution Management, Environmental Science & Technology 45 (2011) 10454-10462.
[196] V. Chandra, K.S. Kim, Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite, Chemical Communications 47 (2011) 3942-3944.
[197] H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Enhanced Cr(vi) removal using iron nanoparticle decorated graphene, Nanoscale 3 (2011) 3583-3585.
[198] G. Zhao, X. Ren, X. Gao, X. Tan, J. Li, C. Chen, Y. Huang, X. Wang, Removal of Pb(ii) ions from aqueous solutions on few-layered graphene oxide nanosheets, Dalton Transactions 40 (2011) 10945-10952.
[199] A.K. Mishra, S. Ramaprabhu, Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture, Journal of Materials Chemistry 22 (2012) 3708-3712.
[200] W.-H. Chiang, D.N. Futaba, M. Yumura, K. Hata, Growth control of single-walled, double-walled, and triple-walled carbon nanotube forests by a priori electrical resistance measurement of catalyst films, Carbon 49 (2011) 4368-4375.
[201] X. Yu, H.S. Park, Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors, Carbon 77 (2014) 59-65.
[202] D. Sun, R. Ban, P.-H. Zhang, G.-H. Wu, J.-R. Zhang, J.-J. Zhu, Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties, Carbon 64 (2013) 424-434.
[203] D.-Y. Yeom, W. Jeon, N.D.K. Tu, S.Y. Yeo, S.-S. Lee, B.J. Sung, H. Chang, J.A. Lim, H. Kim, High-concentration boron doping of graphene nanoplatelets by simple thermal annealing and their supercapacitive properties, Scientific reports 5 (2015).
[204] F. Buckel, F. Effenberger, C. Yan, A. Gölzhäuser, M. Grunze, Influence of Aromatic Groups Incorporated in Long‐Chain Alkanethiol Self‐Assembled Monolayers on Gold, Advanced Materials 12 (2000) 901-905.
[205] E.t. Clementi, D.-L. Raimondi, Atomic screening constants from SCF functions, The Journal of Chemical Physics 38 (1963) 2686-2689.
[206] P.A. Denis, R. Faccio, A.W. Mombru, Is It Possible to Dope Single‐Walled Carbon Nanotubes and Graphene with Sulfur?, ChemPhysChem 10 (2009) 715-722.
[207] P.A. Denis, When noncovalent interactions are stronger than covalent bonds: Bilayer graphene doped with second row atoms, aluminum, silicon, phosphorus and sulfur, Chemical Physics Letters 508 (2011) 95-101.
[208] P.A. Denis, Concentration dependence of the band gaps of phosphorus and sulfur doped graphene, Computational Materials Science 67 (2013) 203-206.
[209] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, K. Novoselov, H. Krishnamurthy, A. Geim, A. Ferrari, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nature nanotechnology 3 (2008) 210-215.
[210] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics reports 409 (2005) 47-99.
[211] M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy, Nano letters 10 (2010) 751-758.
[212] L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms, Journal of the American Chemical Society 54 (1932) 3570-3582.
[213] Y.L. Wang, K.H. Su, J.P. Zhang, Studying of B, N, S, Si and P Doped (5, 5) Carbon Nanotubes by the Density Functional Theory, Advanced Materials Research, Trans Tech Publ, 2012, pp. 1488-1492.
[214] Y. Yan, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries, Chemical Communications 48 (2012) 10663-10665.
[215] S.S. Li, Semiconductor physical electronics, Springer Science & Business Media2012.
[216] Y. Li, Y. Wang, S. Chen, H. Wang, T. Kaneko, R. Hatakeyama, Electrical transport properties of boron-doped single-walled carbon nanotubes, Journal of Applied Physics 113 (2013) 054313.
[217] C. Ling, F. Mizuno, Boron-doped graphene as a promising anode for Na-ion batteries, Physical Chemistry Chemical Physics 16 (2014) 10419-10424.
[218] Y. Chen, J. Li, T. Mei, X.g. Hu, D. Liu, J. Wang, M. Hao, J. Li, J. Wang, X. Wang, Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction, Journal of Materials Chemistry A 2 (2014) 20714-20722.
[219] A.B. Bourlinos, G. Trivizas, M.A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis, A. Bakandritsos, K. Hola, O. Kozak, R. Zboril, Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties, Carbon 83 (2015) 173-179.
[220] R. Lv, Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing, Scientific reports 2 (2012).
[221] J. Wu, L. Ma, R.M. Yadav, Y. Yang, X. Zhang, R. Vajtai, J. Lou, P.M. Ajayan, Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction, ACS applied materials & interfaces 7 (2015) 14763-14769.
[222] T. Susi, A. Kaskela, Z. Zhu, P. Ayala, R. Arenal, Y. Tian, P. Laiho, J. Mali, A.G. Nasibulin, H. Jiang, Nitrogen-doped single-walled carbon nanotube thin films exhibiting anomalous sheet resistances, Chemistry of Materials 23 (2011) 2201-2208.
[223] J. Wang, R. Ma, Z. Zhou, G. Liu, Q. Liu, Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction, Scientific reports 5 (2015).
[224] P.-C. Wang, Y.-C. Liao, Y.-L. Lai, Y.-C. Lin, C.-Y. Su, C.-H. Tsai, Y.-J. Hsu, Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type materials by a facile hydrazine vapor exposure process, Materials Chemistry and Physics 134 (2012) 325-332.
[225] J. Xu, J. Shui, J. Wang, M. Wang, H.-K. Liu, S.X. Dou, I.-Y. Jeon, J.-M. Seo, J.-B. Baek, L. Dai, Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries, ACS nano 8 (2014) 10920-10930.
[226] G. Ruiz-Soria, T. Susi, M. Sauer, K. Yanagi, T. Pichler, P. Ayala, On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes, Carbon 81 (2015) 91-95.
[227] D. Larrude, M.M. Da Costa, F. Monteiro, A. Pinto, F. Freire Jr, Characterization of phosphorus-doped multiwalled carbon nanotubes, Journal of Applied Physics 111 (2012) 064315.
[228] F. Niu, L.-M. Tao, Y.-C. Deng, Q.-H. Wang, W.-G. Song, Phosphorus doped graphene nanosheets for room temperature NH 3 sensing, New Journal of Chemistry 38 (2014) 2269-2272.
[229] L. Panchakarla, A. Govindaraj, C. Rao, Nitrogen-and boron-doped double-walled carbon nanotubes, ACS nano 1 (2007) 494-500.
[230] C. Rao, A. Govindaraj, Nanotubes and Nanowires RSC Nanoscience & Nanotechnology Series, RSC Publishing: Cambridge, UK, 2005.
[231] M. Sahoo, K. Sreena, B. Vinayan, S. Ramaprabhu, Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery, Materials Research Bulletin 61 (2015) 383-390.
[232] T. Wehling, K. Novoselov, S. Morozov, E. Vdovin, M. Katsnelson, A. Geim, A. Lichtenstein, Molecular doping of graphene, Nano letters 8 (2008) 173-177.
[233] Q. Hao, S.M. Morton, B. Wang, Y. Zhao, L. Jensen, T.J. Huang, Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping, Applied physics letters 102 (2013) 011102.
[234] S.M. Morton, L. Jensen, Understanding the Molecule− Surface Chemical Coupling in SERS, Journal of the American Chemical Society 131 (2009) 4090-4098.
[235] G.C. Schatz, M.A. Young, R.P. Van Duyne, Electromagnetic mechanism of SERS, Surface-enhanced Raman scattering, Springer2006, pp. 19-45.
[236] K. Kneipp, M. Moskovits, H. Kneipp, Surface-enhanced Raman scattering: physics and applications, Springer Science & Business Media2006.
[237] E. Le Ru, E. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: a comprehensive study, The Journal of Physical Chemistry C 111 (2007) 13794-13803.
[238] X. Ling, J. Wu, W. Xu, J. Zhang, Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy, Small 8 (2012) 1365-1372.
[239] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B 54 (1996) 11169.
[240] X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin, L. Guo, Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids, Nanoscale 7 (2015) 20188-20196.
[241] A. Liu, T. Xu, J. Tang, H. Wu, T. Zhao, W. Tang, Sandwich-structured Ag/graphene/Au hybrid for surface-enhanced Raman scattering, Electrochimica Acta 119 (2014) 43-48.
[242] T. Gong, Y. Zhu, J. Zhang, W. Ren, J. Quan, N. Wang, Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene, Carbon 87 (2015) 385-394.
[243] Y. Zhao, W. Zeng, Z. Tao, P. Xiong, Y. Qu, Y. Zhu, Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au–graphene–Ag hybrids, Chemical Communications 51 (2015) 866-869.
[244] S. Huang, X. Ling, L. Liang, Y. Song, W. Fang, J. Zhang, J. Kong, V. Meunier, M.S. Dresselhaus, Molecular selectivity of graphene-enhanced Raman scattering, Nano letters 15 (2015) 2892-2901.
[245] S. Huh, J. Park, Y.S. Kim, K.S. Kim, B.H. Hong, J.-M. Nam, UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering, Acs Nano 5 (2011) 9799-9806.
[246] H. Xu, L. Xie, H. Zhang, J. Zhang, Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene, ACS nano 5 (2011) 5338-5344.
[247] Y. Nonoguchi, K. Ohashi, R. Kanazawa, K. Ashiba, K. Hata, T. Nakagawa, C. Adachi, T. Tanase, T. Kawai, Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants, Scientific reports 3 (2013).
[248] M. Shiraishi, M. Ata, Work function of carbon nanotubes, Carbon 39 (2001) 1913-1917.
[249] Y. Nonoguchi, M. Nakano, T. Murayama, H. Hagino, S. Hama, K. Miyazaki, R. Matsubara, M. Nakamura, T. Kawai, Simple Salt‐Coordinated n‐Type Nanocarbon Materials Stable in Air, Advanced Functional Materials 26 (2016) 3021-3028.
[250] B. Shan, K. Cho, First principles study of work functions of single wall carbon nanotubes, Physical review letters 94 (2005) 236602.

QR CODE