簡易檢索 / 詳目顯示

研究生: 柯文凱
WUN-KAI KE
論文名稱: 無人機群之飛行擾動對地面目標定位影響研究
Research on an Unmanned Aerial Vehicle Swarm with Flight Disturbance for Terrestrial Target Localization
指導教授: 劉馨勤
Hsin-Chin Liu
口試委員: 張立中
Li-Chung Chang
吳玉龍
WU, YU-LUNG
林俊霖
Chun-Lin Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 無人機群動態陣列定位測向
外文關鍵詞: UAV swarm, Dynamic array, Positioningn, AOA estimation
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來無人機技術與應用發展快速,從娛樂、農業、醫療及軍事等,都可以發現其應用。隨著無人機之技術演進,可以利用偵察無人機群進行地面目標物定位。但是由於機翼旋轉和風速等因素,每架無人機可能產生搖擺或偏離其初始預設位置,因而造成定位誤差,因此無人機群成為一動態陣列,與傳統定位研究所使用之靜態陣列大不相同,為了提高定位精確度,如何克服無人機群的幾何擾動問題成為重要的課題。
    這項工作提出了一種針對具有大擾動問題的無人機群的改進的校準方法,該方法在定位精度方面明顯優於先前的研究。所提出的方法可以估計無人機群中每個無人機的位置偏差,並利用這些信息通過多信號分類(MUSIC)演算法來改善到達角估計,從而提高地面目標的定位精度。


    In recent years, unmanned aerial vehicle(UAV) technology and applications have developed rapidly, and its applications can be found in entertainment, agriculture, medical and military, etc. As the technology of UAVs evolves, it is possible to use a reconnaissance UAV swarm for terrestrial target localization. However, due to factors such as wing rotation and wind speed, each UAV may sway or deviate from its nominal position and results in positioning errors. Therefore, the UAV swarm becomes a positioning problem using a dynamic array that is very different with conventional researches on positioning using a static array. In order to enhance the positioning accuracy, it is important to overcome the disturbance problem of geometric configuration of a UAV swarm.
    This work proposes an improved calibration method for a UAV swarm with large disturbance problem, which significantly out performs prior similar researches in terms of the localization accuracy. The proposed method can estimate the position deviation of each UAV in a UAV swarm and use these information to improve the angle of arrival estimation using Multiple Signal Classification (MUSIC) algorithm, and hence improve the localization accuracy of terrestrial targets.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 縮寫索引 IX 索引符號 X 第1章 緒論 1 1.1 研究動機 1 1.2 論文貢獻 2 1.3 章節概要 2 第2章 文獻探討與背景介紹 3 2.1 無人機群目標信號源定位演算法 3 2.2 無人機群校正方法 3 2.3 存在無人機位置誤差之天線陣列AOA定位演算法 5 2.3.1 多個互不干擾信號源定位場景 5 2.3.2 受擾動無人機群影響定向演算法原因 9 2.4 偽隨機序列與直序展頻系統 12 2.4.1 偽隨機序列 12 2.4.2 直序展頻分碼多工同步 14 第3章 改善多個獨立信號源校正與定位方法 20 3.1 無人機群校正模型 20 3.2 改善校正信號源在大擾動下無法校正方法 24 3.2.1 相位模糊性問題 24 3.2.2 改善校正信號源在大擾動下無法校正問題架構 27 3.3 到達角度估測誤差補償方法 29 第4章 模擬與分析結果 35 4.1 無人機群位置校正模擬 35 4.1.1 小擾動無人機群位置校正演算法模擬 35 4.1.2 校正信號源數量對引示校正演算法影響 37 4.1.3 現有文獻引示校正法與改善引示校正方法比較 40 4.1.4 遠近效應影響改善校正演算法分析 42 4.2 對地面目標物演算法模擬分析 44 4.2.1 改善引示校正法對地面目標物定位誤差分析 44 第5章 結論與未來研究方向 46 參考文獻 47

    [1] P. H. Dana, "Global Positioning System (GPS) Time Dissemination for Real-Time Applications," Real-Time Systems, vol. 12, no. 1, pp. 9-40.
    [2] K. C. Ho and X. Wenwei, "An accurate algebraic solution for moving source location using TDOA and FDOA measurements," IEEE Transactions on Signal Processing, vol. 52, no. 9, pp. 2453-2463, 2004.
    [3] E. Xu, Z. Ding, and S. Dasgupta, "Wireless source localization based on time of arrival measurement," in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, 2010, pp. 2842-2845.
    [4] Z. Chen, G. Gokeda, and Y. Yu, Introduction to Direction-of-arrival Estimation. Artech House, 2010.
    [5] Y. Zheng, M. Sheng, J. Liu, and J. Li, "Exploiting AoA Estimation Accuracy for Indoor Localization: A Weighted AoA-Based Approach," IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 65-68, 2019.
    [6] Y. Wang and K. C. Ho, "Unified Near-Field and Far-Field Localization for AOA and Hybrid AOA-TDOA Positionings," IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1242-1254, 2018.
    [7] K. Pahlavan and P. Krishnamurthy, Principles of wireless access and localization. John Wiley & Sons, 2013.
    [8] J. Xu, M. Ma, and C. L. Law, "AOA cooperative position localization," in IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, 2008, pp. 1-5: IEEE.
    [9] R. A. Poisel, Introduction to communication electronic warfare systems. Artech House, Inc., 2008.
    [10] N. BniLam, D. Joosens, J. Steckel, and M. Weyn, "Low Cost AoA Unit for IoT Applications," in 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019, pp. 1-5.
    [11] K. V. Stavropoulos and A. Manikas, "Array calibration in the presence of unknown sensor characteristics and mutual coupling," in 2000 10th European Signal Processing Conference, 2000, pp. 1-4.
    [12] A. Manikas and N. Fistas, ''Modelling and estimation of mutual coupling between array elements'', Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, ICASSP-94, Adelaide, Australia , vol. 4, pp. 553-556, April 1994.
    [13] A. Manikas, Y. I. Kamil, and M. Willerton, "Source Localization Using Sparse Large Aperture Arrays," IEEE Transactions on Signal Processing, vol. 60, no. 12, pp. 6617-6629, 2012.
    [14] R. Hamza and K. Buckley, "An analysis of weighted eigenspace methods in the presence of sensor errors," IEEE Transactions on Signal Processing, vol. 43, no. 5, pp. 1140-1150, 1995.
    [15] C. Roller and W. Wasylkiwskyj, "Effects of mutual coupling on super-resolution DF in linear arrays," in [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, vol. 5, pp. 257-260 vol.5.
    [16] Z. M. Liu, Z. T. Huang, and Y. Y. Zhou, "Bias analysis of MUSIC in the presence of mutual coupling," IET Signal Processing, vol. 3, no. 1, pp. 74-84, 2009.
    [17] A. J. Weiss and B. Friedlander, "Effects of modeling errors on the resolution threshold of the MUSIC algorithm," IEEE Transactions on Signal Processing, vol. 42, no. 6, pp. 1519-1526, 1994.
    [18] F. Li and R. J. Vaccaro, "Sensitivity analysis of DOA estimation algorithms to sensor errors," IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 3, pp. 708-717, 1992.
    [19] A. L. Swindlehurst and T. Kailath, "A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm," IEEE Transactions on Signal Processing, vol. 40, no. 7, pp. 1758-1774, 1992.
    [20] M. Willerton and A. Manikas, "Array shape calibration using a single multi-carrier pilot," in Sensor Signal Processing for Defence (SSPD 2011), 2011, pp. 1-6.
    [21] N. Fistas and A. Manikas, "A new general global array calibration method," in Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing, 1994, vol. iv, pp. IV/73-IV/76 vol.4.
    [22] M. Lanne, A. Lundgren, and M. Viberg, "Calibrating an Array with Scan Dependent Errors Using a Sparse Grid," in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp. 2242-2246.
    [23] S. Chong-Meng Samson, P. Boon-Kiat, and C. F. N. Cowan, "Sensor array calibration using measured steering vectors of uncertain location," in 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997, vol. 5, pp. 3749-3752 vol.5.
    [24] G. Efstathopoulos and A. Manikas, "A blind array calibration algorithm using a moving source," in 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, 2008, pp. 455-458.
    [25] M. P. Wylie, S. Roy, and H. Messer, "Joint DOA estimation and phase calibration of linear equispaced (LES) arrays," IEEE Transactions on Signal Processing, vol. 42, no. 12, pp. 3449-3459, 1994.
    [26] Y. Rockah, H. Messer, and P. M. Schultheiss, "Localization performance of arrays subject to phase errors," IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 402-410, 1988.
    [27] Z. Ming and Z. Zhaoda, "A method for direction finding under sensor gain and phase uncertainties," IEEE Transactions on Antennas and Propagation, vol. 43, no. 8, pp. 880-883, 1995.
    [28] B. Friedlander, A. Weiss, and S. Haykin, "Self-calibration for high-resolution array processing," Advances in spectrum analysis and array processing, vol. 2, pp. 349-413, 1991.
    [29] Y. Rockah and P. Schultheiss, "Array shape calibration using sources in unknown locations--Part I: Far-field sources," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 3, pp. 286-299, 1987.
    [30] A. J. Weiss and B. Friedlander, "Array shape calibration using sources in unknown locations-a maximum likelihood approach," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 12, pp. 1958-1966, 1989.
    [31] A. J. Weiss and B. Friedlander, "Array shape calibration using eigenstructure methods," in Twenty-Third Asilomar Conference on Signals, Systems and Computers, 1989, vol. 2, pp. 925-929.
    [32] B. Wahlberg, B. Ottersten, and M. Viberg, "Robust signal parameter estimation in the presence of array perturbations," in [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing, 1991, pp. 3277-3280: IEEE.
    [33] A. Paulraj and T. Kailath, "Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase," in ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1985, vol. 10, pp. 640-643.
    [34] C. Pei-Jung and W. Shuang, "Array self-calibration using SAGE algorithm," in 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, 2008, pp. 165-169.
    [35] R. O. Schmidt, “A signal subspace approach to multiple emitter location and spectral estimation,” Ph.D. dissertation, Stanford Univ., 1981
    [36] J. G. Proakis and M. Salehi, Digital communications. McGraw-hill New York, 2001.
    [37] D. V. Sarwate and M. B. J. P. o. t. I. Pursley, "Crosscorrelation properties of pseudorandom and related sequences," vol. 68, no. 5, pp. 593-619, 1980.
    [38] R. L. Peterson, R. E. Ziemer, and D. E. Borth, Introduction to spread-spectrum communications. Prentice hall New Jersey, 1995.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE