簡易檢索 / 詳目顯示

研究生: 陳君霖
Jun-Lin Chen
論文名稱: 應用不同燃料於化學迴路產氫製程之模擬與操作變數分析研究
Simulation and Operating Variables Analysis of Chemical Looping Hydrogen Production via Various Fuels
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
吳煒
Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 106
中文關鍵詞: 化學迴路製程移動床反應器產氫製程程序模擬煤炭與甲烷燃料
外文關鍵詞: chemical looping combustion, Moving bed reactor, Hydrogen production, process simulation, coal and methane fuel
相關次數: 點閱:295下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究主要針對30kWth的移動床反應器之化學迴路程序,利用Aspen Plus模擬軟體進行不同燃料之模型建立與模擬分析。
    固體燃料選擇低揮發度的Pocahontas No.3煤炭在絕熱條件下進行模擬,因此當還原反應器進料溫度與燃燒反應器出料溫度相同時,則系統達熱平衡。當操作在較大的氣送空氣量時,由於會帶走較多的熱量,使得產氫量下降。而操作在較低的循環量或使用較高惰性載體配比之載氧體,均會使得載氧體轉化率上升,同時也使得產氫量上升。在不同還原反應器進料溫度下,低溫有利於增加產氫量,但所需之載氧體會大幅提升,因此當使用惰性載體配比為40%且進料溫度為1000oC系統有最大產氫量。最後可再藉由提升惰性載體配比為60%,可使產氫量上升8.6%。
    在甲烷燃料化學迴路程序,探討還原反應器在絕熱與恆溫條件兩種不同模擬方式之差異。結果顯示,載氧體轉化率主要受循環量與配比影響較顯著。利用ɸmin條件載氧體測試,在較低溫的還原反應器下需要更多的Fe2O3配比才能使甲烷轉化率達100%。在絕熱條件下,降低循環量會使出料溫度下降,同時使得產氫量增加;在恆溫條件下,降低循環量會導致燃燒反應器上升才能達系統熱平衡,因此會使得產氫量下降。在載氧體配比Fe2O3:Al2O3為 60 wt%:40 wt%,可再藉由調整循環量使產氫量增加。在絕熱條件下,將還原反應器出料溫度為750 oC有最大產氫量;在恆溫條件下,將燃燒反應器出料溫度為1050 oC有最大產氫量。


    In this study, 30kWth moving bed reactor chemical looping process simulation and analysis via various fuels are studied by using Aspen Plus simulator.
    This study can estimate the optimum operating conditions and the maximum hydrogen yield in this model by feeding Pocahontas No.3 as solid fuel. In this study, all reactors are setting in the adiabatic condition. Therefore, the system means to the heat balance condition under the combustor outlet temperature the same with the reducer inlet temperature. If the system operates at higher air flowrate, the more heat will be take away and the hydrogen yield will decrease. It is found that the oxygen carrier conversion and hydrogen yield will increase at lower oxygen carrier circulation rate or with higher inert support percentage. Moreover, the hydrogen yield is inversely proportional to the reducer outlet temperature in different conditions of reducer outlet temperature. The result shows that the maximum hydrogen yield can be found when the reducer inlet temperature is at 1000 oC and the oxygen carrier support percentage is 40% of the 30 kWth system. Furthermore, the hydrogen yield will increase 8.6% under the 60% inert support percentage.
    The oxygen carrier conversion is dominated by the circulation rate and the inert support percentage. However, increasing Fe2O3 percentage is an important operation if the reducer is operated at lower temperature. It is found that the hydrogen yield can be adjusted by the circulation rate under the oxygen carrier support percentage equal to 40%.
    In this study, the tendency of main operating variables for the reducer between in adiabatic and isothermal conditions is quite different for CH4 chemical looping process. In adiabatic condition, the outlet temperature would decrease, and the hydrogen yield increases simultaneously if the circulation rate decreases. The result shows that the maximum hydrogen yield can be found when the reducer outlet temperature is at 750 oC in adiabatic condition. In isothermal condition, the hydrogen yield is proportional to the circulation rate because increasing the combustor temperature to reach heat balance is required under the lower circulation rate. Besides, the maximum hydrogen yield can be found when the combustor outlet temperature is at 1050 oC in isothermal condition.

    致謝I 摘要II AbstractIII 目錄IV 圖目錄VI 表目錄IX 第一章 緒論1 1.1前言1 1.2文獻回顧4 1.2.1二氧化碳捕捉之技術4 1.2.2化學迴路燃燒程序6 1.2.3化學迴路產氫程序17 1.3研究動機與目的24 1.4組織章節25 第二章 熱力學與動力學26 2.1前言26 2.2熱力學27 2.3動力學29 2.3.1還原反應器29 2.3.2氧化反應器31 2.3.3燃燒反應器32 第三章 直接煤炭化學迴路程序33 3.1前言33 3.2研究方法34 3.3模型建立37 3.4不同操作變數之影響41 3.4.1最小載氧體循環量評估42 3.4.2載氧體惰性載體配比探討44 3.4.3載氧體循環量探討48 3.4.4燃料反應器操作溫度探討53 3.4.5系統最大產氫量評估67 第四章 氣體燃料化學迴路程序69 4.1前言69 4.2甲烷燃料絕熱與恆溫條件之比較分析69 4.2.1絕熱與恆溫條件研究方法之比較73 4.2.2還原反應器出料之結果探討75 4.2.3系統產氫量之結果探討80 4.3系統產氫量最佳參數之分析87 4.3.1系統最大產氫量研究方法之比較87 4.3.2還原反應器在絕熱條件下分析91 4.3.3還原反應器在恆溫條件下分析95 第五章 結論與未來展望99 參考文獻102

    Adanez, J., de Diego, L.F., Garcia-Libiano, F., Gayan, P. and Abad, A., Selection of Oxygen Carriers for Chemical-looping Combustion, Energy Fuels, 2004, 18, 371-377.
    Andrus, H.E., Chiu, J.H., Thibeault, P.R. Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. 1st International Conference on Chemical Looping, Lyon, France. 2010.
    Aspen Plus. Getting Started Modeling Processes with Solids. Aspen Tech: Cambridge, MA. 2006.
    Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L., Fan L.S. Parametric and Dynamic Studies of an Iron-Based 25-kWth Coal Direct Chemical Looping Unit using Sub-Bituminous Coal. Applied Energy. 2015, 145: 354-363.
    Bayham, S.C., Kim, H.R., Wang, D., Tong, A., Zeng, L., McGiveron, O., Kathe, M.V., Chung, E., Wang, W., Wang, A., Majumder, A., Fan, L.S. Iron-Based Coal Direct Chemical Looping Combustion Process: 200 h Continuous Operation of a 25 kWth Sub-pilot Unit. Energy Fuels. 2013, 27:1347−1356.
    Beal, C., Epple, B., Lyngfelt, A., Adánez, J., Larring, Y., Guillemont, A., Anheden, M. Development of Metal Oxides Chemical Looping Process for Coal-fired Power Plants. 1st International Conference on Chemical Looping, Lyon, France, 2010.
    Berguerand, N., Lyngfelt, A. Chemical Looping Combustion of Petroleum Coke Using Ilmenite in a 10 kWth Unit High Temperature Operation. Energy Fuels, 2009, 23:5257–5268.
    Berguerand, N., Lyngfelt, A. The Use of Petroleum Coke as Fuel in a 10 kWth Chemical-looping Combustor. Int. J. Greenhouse Gas Control. 2008, 2, 169–179.
    Cabello, A., Dueso, C., García-Labiano, F., Abad, A., de Diego, L. F. Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with CH4 and H2S in a 500 Wth CLC unit. Fuel, 2014, 121, 117 e 125.
    Cao, Y., Sit, S.P., Pan, W, P, The Development of 10-kW Chemical Looping Combustion Technology in ICSET, WKU, 2nd Intemational Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. 2012.
    Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L., Tseng, Y.H. Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-tube Moving Bed Reactor with Iron-Based Oxygen Carrier. Fuel, 2014, 135:146-152

    Chiu, P.C., Ku, Y., Wu, H.C., Kuo, Y.L., Tseng, Y.H. Spent Isopropanol Solution as Possible Liquid Fuel for Moving Bed Reactor in Chemical Looping Combustion. Energy Fuels, 2014; 28:657-665
    Ennenbach, F. and Kluger, K., 2012, “Challenges for 2nd Generation Technologies Like Chemical and Carbonate Looping from an Industry Point of View,” 2nd Intemational Conference on Chemical Looping, 26-28 September, Darmstadt, Germany. 2012.
    Fan, L.S. Chemical looping systems for Fossil Energy Conservations. John-Wiley and sons. 2010
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D. Advances in CO2 capture technology -The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control. 2008; 2: 9 ~ 20.
    Gupta, P., Velazquez-Vargas, L.G., Fan, L.S. Syngas Redox (SGR) Process to Produce Hydrogen from Coal Derived Syngas. Energy Fuels. 2007; 21(5):2900–2908.
    He, F., Galinsky, N., & Li, F. X. ,. Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles- Feasibility assessment and process simulations. Int. J. of Hydrogen Energy, 2013 38(19), 7839-7854.
    International Energy Agency (IEA) Key World Energy Statistics, 2016.
    Ishida, M.; Takeshita, K.; Susuki, K.; Ohba, T. Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical Loop Combustor, Energy Fuels, 2005, Vol 19, pp. 2514–2518
    Jukkola, G., Liljedahl, G., Nsakala, N. Y., Morin, J.-X., & Andrus, H. An Alstom vision of future CFB technology based power plant concepts. 18th international conference on fluidized bed combustion, Toronto, Canada, May 22 e 25, 2005, (pp. 109 e 120)
    Johansson, M; Mattisson, T; Lyngfelt, A.; Thurman, H. Combustion of Syngas and Natural Gas in a 300 W Chemical Looping Combustor, Chem. Eng. Res. Des., 2006, Vol. 84 (A9), pp. 819–827
    Kathe, M.V., Empfield, A., Na, J., Blair, E., Fan, L.S. Hydrogen Production from Natural Gas Using an Iron-Based Chemical Looping Technology: Thermodynamic simulations and process system analysis. Applied Energy. 2016, 165:183–201.
    Kim, H.R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M.V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., Fan, L., S., Coal direct chemical looping combustion process: Design and operation of a 25-kWth sub-pilot unit. Fuel. 2013, 108:370–384.
    Kolbitsch, P., Bolhar-Nordenkampf, J., Pröll, T., Hofbauer, H. Comparison of Two Ni-based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation. Ind. Eng. Chem. Res. 2009a; 48: 5542–5547.
    Kolbitsch, P., Pröll, T., Bolhar-Nordenkampf, J., Hofbauer, H. Operating Experience with Chemical Looping Combustion in a 120 kW Dual Circulating Fluidized Bed (DCFB) Unit. Energy Procedia. 2009b; 1:1465–1462.
    Ku, Y., Wu, H.C., Chiu, P.C., Tseng, Y.H., Kuo, Y.L. Methane Combustion by Moving Bed Fuel Reactor with Fe2O3/Al2O3 Oxygen Carriers. Applied Energy. 2014, 1131909-1915
    Li, F., Zeng, L., Fan, L.S. Biomass Direct Chemical Looping Process: Process Simulation. Fuel. 2010a, 89:3773−3784.
    Li, F., Zeng, L., Velazquez-Vargas, L.G., Zachary, Yoscovits, Fan, L.S. Syngas Chemical Looping Gasification Process: Bench-Scale Studies and Reactor Simulations. AIChE J. 2010 Aug; 56 (8):2186−2199.
    Linderholm, C., Abad, A., Mattisson, T., Lyngfelt, A. 160 h of Chemical-looping Combustion in a 10 kW Reactor System with a NiO-based Oxygen Carrier. Int. J. Greenhouse Gas Control. 2008, 2:520–530.
    Linderholm, C., Mattisson, T., Lyngfelt, A. Long-term Integrity Testing of Spray-dried Particles in a 10-kW Chemical-looping Combustor Using Natural Gas as Fuel. Fuel. 2009, 88:2083–2096.
    Lyngfelt, A. Oxygen Carriers for Chemical Looping Combustion-4000 h of Operational Experience. Oil and Gas Science and Technology. 2011, 66(2):161–172.
    Lyngfelt, A., & Thunman, H., Chemical-looping combustion: design, construction and 100 h of operational experience of a 10 kW prototype. In D. Thomas (Ed.), Capture and separation of carbon dioxide from combustion: Vol. 1. Carbon dioxide capture for storage in deep geologic formations e results from the CO2 capture project. London: Elsevier, ISBN 0080445705. 2004
    Mattisson, T., Lyngfelt, A., & Leion, H., Chemical-looping with oxygen uncoupling for combustion of solid fuels. Int. J. Greenhouse Gas Control, 2009. 3(1), 11-19.
    National Energy Technology Laboratory. Detailed Coal Specifications. 2012.
    Notz, R., Tonnies. I., McCann, N., Scheffknecht, G. and Hasse, H., CO2 Capture for Fossil Fuel Fired Power Plants, Chem. Eng. Technol., 2011, 34(2), 163-172.
    Orth, M., Ströh, J., Epple, B. Design and Operation of a 1 MWth Chemical Looping Plant, 2nd Intemational Conference on Chemical Looping, 26-28 September, Darmstadt, Germany 2012
    Pans, M. A., Gayan, P., Abad, A., García-Labiano, F., de Diego, L. F., & Adanez, J.,.Use of chemically and physicaly mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process. Fuel Processing Technology, 2013, 115, 152 e 163.

    Pröll, T., Kolbitsch, P., Bolhar-Nordenkampf, J., Hofbauer, H. A Novel Dual Circulating Fluidized Bed System for Chemical Looping Processes. AIChE J. 2009a, 55 (12):3255–3266.
    Pröll, T., Mayer, K., Bolhar-Nordenkampf, J., Kolbitsch, P., Mattisson, T., Lyngfelt, A., Hofbauer, H. Natural Mineral as Oxygen Carriers for Chemical Looping Combustion in a Dual Circulating Fluidized Bed System. Energy Procedia. 2009b, 1:27–34.
    Paul, F. and Ben, A. Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture. 2015. Woodhead Publishing, UK, ISBN 978-0-85709-243-4.
    Richter, H. J.; Knoche, K. F., Reversibility of Combustion Process, Efficiency and Costing, Second Law Analysis of Processes, ACS Symposium Series, 1983, pp.71–85
    Rydén, M., Lyngfelt, A., & Mattisson, T. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel, 2006, 85(12 e 13), 1631 e 1641.
    Ryu, H.J., Jo, S.H., Park, Y., Bae, D.H., Kim, S. Long Term Operation Experience in a 50 kWth Chemical Looping Combustor Using Natural Gas and Syngas as Fuels. 1st International Conference on Chemical Looping, Lyon, France. 2010.
    Shen, L., Wu, J., Xiao, J., Gao, Z., Xiao, J. Reactivity Deterioration of NiO /Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor Combust. Flame. 2009a, 156:1377–1385.
    Shen, L., Wu, J., Xiao, J., Song, Q., Xiao, R. Chemical Looping Combustion of Biomass in a 10 kWth Reactor with Iron Oxide as an Oxygen Carrier. Energy Fuels. 2009b, 23:2948–2505.
    Sridhar, D., Tong, A., Kim, H., Zeng, L., Li, F., Fan, L.S. Syngas Chemical Looping Process: Design and Construction of a 25 kWth Sub-pilot Unit. Energy Fuels. 2012, 26:2292–2302.
    Siriwardane, R. Tian H, Richards G, Simonyi T, Poston J. Chemical-looping combustion of coal with metal oxide oxygen carriers. Energy Fuels 2009, 23:3885–92.
    Siriwardane, R. Tian H, Simonyi T, Poston J. Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion. Fuel, 2013; 108:319–33.
    Siriwardane, R. V., Ksepko, E., Tian, H. J., Poston, J., Simonyi, T., & Sciazko, M. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal. Applied Energy. 2013, 107, 111-123.

    Siriwardane, R., Tian, H. J., Miller, D., & Richards, G. Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO-Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion. Applied Energy. 2015, 157, 348-357.
    Wu, H.C., Ku, Y., Tsai, H.H., Kuo, Y.L., Tseng, Y.H. Rice Husk as Solid Fuel for Chemical Looping Combustion in an Annular Dual-tube Moving Bed reactor. Chemical Engineering Journal, 2015, 280:82–89.
    Xiang, W., Chen, Y. Hydrogen and Electricity from Coal with Carbon Dioxide Separation Using Chemical Looping Reactors. Energy Fuels. 2007, 21(4):2272–2277.
    Zeng, L., He, F., Li, F., Fan, L.S. Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation. Energy & Fuels. 2012; 26:3680−3690.
    Zeng, L., Tong, A., Kathe, M., Bayham, S., Fan, L.S. Iron Oxide Looping for Natural Gas Conversion in a Countercurrent Moving Bed Reactor. Applied Energy. 2015, 157: 338–347.
    彭鏡禹,化學迴路技術發展概況與展望,中興工程,第124期。111 – 119 (2014)
    邱炳嶔,Fe2O3/Al2O3載氧體應用於化學迴圈程序移動床燃料反應器之評估研究,台灣科技大學化工所碩士論文 (2014)
    黃資元,不同煤炭於化學迴路產氫製程之模擬與分析研究,台灣科技大學化工所碩士論文 (2015)
    盧彥劭,煤炭與甲烷燃料產氫之化學迴路至成模擬研究,台灣科技大學化工所碩士論文 (2016)

    QR CODE