簡易檢索 / 詳目顯示

研究生: 周姝妤
Shu-yu Jhou
論文名稱: 椎弓根骨螺絲固定系統於治療腰椎椎間盤退化之生物力學研究
Biomechanical Investigation of Pedicle Screw System for the Treatment of Lumbar Degenerative Disc Disease
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 137
中文關鍵詞: 腰椎有限元素分析椎間盤退化Dynesys動態固定器混合型動態固定系統鄰近節退化問題
外文關鍵詞: Lumbar spine, finite element analysis, Degenerative disc, Dynesys, Hybrid stabilization systems, Adjacent segment degeneration
相關次數: 點閱:297下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人體隨著年紀增長或姿勢不良等長期不正常受力影響後,椎間盤逐漸退化造成椎間不穩定,進而壓迫到神經使病患產生疼痛感。最常見的治療方式為脊椎後方內固定器融合術,但臨床上發現由於手術端的活動喪失導致鄰近節之代償行為,可能會發生鄰近節退化問題,於是動態脊椎固定系統的觀念便延伸而出,通常進行脊椎手術時醫生只採用融合或非融合技術其中之一,但近幾年有學者提出將融合和非融合技術相結合的概念,使得混合型固定技術逐漸應用於臨床上,希望達到原有的穩定度之餘還能減少鄰近節過多的補償而產生退化。但目前少有文獻針對上述固定系統進行鄰近節補償問題之完整探討,且混用型動態固定系統因使用時間短以致臨床文獻較為不足,其治療方法大多依靠醫生臨床上應用所得出的結果進行判斷,也尚未有力學上的驗證來證明何種排列方式為最佳的固定方法,因此本研究希望能對鄰近節之變化做更進一步的探討,並試圖用力學驗證混合型固定器最佳之治療方式。
因此,本研究主要目的為使用T11-S1的脊椎模型,利用有限元素分析來評估,當脊椎L4-L5椎間盤發生輕度退化情況時植入單節剛性、半剛性及動態等不同固定系統,或雙節不同排列位置之混合型動態固定系統,在前彎、後彎、側彎及旋轉四種不同運動方向其各椎節間旋轉角度、椎間盤應力分佈及螺絲應力分佈等生物力學特性,並探討上述情況下手術節及鄰近節之變化情形進而得到最佳的之療方式。
分析結果顯示,傳統剛性固定之椎節間旋轉角度與椎間盤應力值皆小於動態固定,當手術節段之椎間旋轉角度越小即越穩定,然而當手術端越穩定鄰近節補償情形則越顯著,導致鄰近節旋轉角度及椎間盤應力增量較大,產生鄰近節退化的風險較高,且穩定度佳其螺絲應力值相對的也較高,較易發生螺絲損壞之情況;而雙節混用型動態固定使用45R-34D時,其鄰近節旋轉角度及椎間盤應力值最接近完整腰椎,且螺絲應力值偏低,因此可證實此種排列位置為較佳之治療方式。


Fusion has been the gold standard treatment for treating the disc degeneration. Many clinical studies have showed that adjacent segment degeneration was observed in patients over time. In order to overcome problems with fusion devices, dynamic stabilization systems are being used to treat disc degeneration related problems. Recently it’s began to combine fusion and non-fusion techniques in the treatment of multi-segmental Degenerative disc disease (DDD). It is hybrid dynamic stabilization designed to promote a balance of stability and adjacent segment degeneration. However, no report investigated whole spine motion and the segment adjacent to the hybrid dynamic stabilization. The purpose of this study was to investigate how different treatment methods influence the biomechanics of adjacent segment and which one is the best treatment of hybrid dynamic stabilization.
A 3-D nonlinear finite element model of the T11-S1 lumbar spine was used to evaluate biomechanics of various device including rigid rod, semi-rigid rod, Dynesys and hybrid stabilization systems inserted at level L4/L5 in comparison with intact spine. Mild disc degeneration was simulated at L4-L5 level. The loading cases of flexion, extension, lateral bending and axial rotation were simulated. Intersegmetal rotation, disc stresses and screw stresses were calculated at implant level and at the adjacent level.
Compared to an intact spine, a dynamic implant reduced inter-segmental rotation at implant level, decreased disc stresses and at implant level. With a rigid implant, these effects are more pronounced. Screw stresses were generally higher in a rigid fixator than in a dynamic implant. The rigid implant had more effect than dynamic implant at the adjacent level. With the hybrid stabilization systems, our results indicated that where the dynamic implant placed superior to the rigid fixator inserted at degenerative disc level was the better treatment.

中文摘要I ABSTRACTII 誌謝III 目錄IV 圖目錄索引VII 表目錄索引X 第一章 緒論1 1.1 研究背景1 1.2 脊椎之解剖生理學2 1.2.1腰椎椎體之生物力學特性3 1.2.2腰椎椎間盤之生物力學特性4 1.2.3腰椎周圍韌帶之生物力學特性5 1.3 腰椎之病理7 1.3.1椎體受損7 1.3.2椎間盤退化8 1.3.2.1 椎間盤突出10 1.3.2.2 椎管狹窄11 1.3.2.3 椎間滑脫12 1.4 腰椎植入物介紹14 1.4.1人工椎間盤14 1.4.1.1核心置換型 (Nucleus Replacement)15 1.4.1.2全人工椎間盤置換(Total Disc Replacement)15 1.4.2融合系統17 1.4.3動態穩定系統19 1.4.3.1棘突間撐開器20 1.4.3.2椎弓根骨螺絲系統24 1.5 文獻回顧28 1.5.1後方腰椎融合術併發症28 1.5.2鄰近節退化問題29 1.5.3動態固定系統發展及臨床結果30 1.5.4動態固定系統生物力學體外試驗回顧 32 1.5.5動態固定系統生物力學有限元素分析回顧33 1.5.6混合型動態固定系統文獻回顧38 1.6 研究目的42 1.7 本文架構43 第二章 材料與方法44 2.1 有限元素法簡介46 2.2 模型結構建立49 2.2.1完整腰椎構造49 2.2.2腰椎植入物構造49 2.2.3完整腰椎植入固定器之模型53 2.3 有限元素分析58 2.3.1完整腰椎有限元素模型58 2.3.2材料參數設定60 2.3.3界面接觸條件設定63 2.3.4網格設定64 2.3.5邊界預負載條件設定66 2.3.6收斂性分析69 2.4 腰椎元件生物力學分析70 2.4.1整體角度轉換位移70 2.4.2椎節間旋轉角度計算73 第三章 結果75 3.1 收斂性分析75 3.2 完整腰椎模型驗證82 3.3 退化性腰椎分析結果85 3.3.1各椎節間旋轉角度85 3.3.2椎間盤之von Mises應力 88 3.4 單節固定器之腰椎生物力學分析92 3.4.1各椎節間旋轉角度92 3.4.2椎間盤之von Mises應力 99 3.5 雙節混合型動態固定器之腰椎生物力學分析 105 3.5.1 各椎節間旋轉角度105 3.5.2 椎間盤之von Mises應力116 3.6 椎弓根骨螺絲之應力121 3.6.1單節固定器121 3.6.2雙節混合型動態固定器122 第四章 討論124 4.1 研究結果之探討124 4.1.1各節椎間旋轉角度124 4.1.2椎間盤應力126 4.1.3鄰近節補償126 4.1.4椎弓根骨螺絲應力128 4.2 研究限制129 第五章 結論與未來展望131 5.1 結論131 5.2 未來展望133 參考文獻134

[1]Hu ME, Chen YH, Hsieh HY, et al. Human Anatomy. 1st ed. Taipei: Yi Hsien Publishing Co., Ltd., 1999.
[2]華人脊椎線上http://www.spineonline.com.tw/chest.php?act=view&no=54&idx=001
[3]Anthony P.Schnuerer , P.A. Julio Gallego, M.D. Cristie Manuel, Anatomy of the Spine & Structures.
[4]洪一智,「腰椎脊突間撐開器的有限元素分析」國立中央大學機械工程研究所碩士論文
[5]台灣脊椎中心 http://www.taiwanspinecenter.com/ch/education/spine_anatomy/disc.htm
[6]Anna-Mart Kruger Physiotherapists http://www.physionam.com/index.html
[7]spine-health http://www.spine-health.com/
[8]mildR http://www.mildprocedure.com/what-is-lss.html
[9]iSpineCare http://www.ispinecare.com/index.html
[10]Adams M.A., Roughley P.J. What is intervertebral disc degeneration, and what causes it? Spine, vol. 31, no. 18, pp. 2151–2161, 2006.
[11]Urban J.P. and Roberts S. Degeneration of the interver-tebral disc. Arthritis Research and Therapy,vol.5,no.3,pp.120–130, 2003.
[12]Serhan H., Defossez D. and Bono C.M. Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. SAS Journal vol. 5,no. 3, pp. 75-89, 2011.
[13]Palepu V., Kodigudla M. and Goel V.K., Biomechanics of Disc Degeneration. Adv Orthop. 2012:726210. Epub 2012 Jun 17
[14]Curtis A. Dickman, MD, Internal Fixation and Fusion of the Lumbar Spine Using Threaded Interbody Cages. Barrow Quarterly-Vol. 13, No. 3, 1997
[15]ManojKrishna
http://www.spinalsurgeon.com/treatments/surgical-treatments/plif/
[16]Cedric Y. Barrey, Pedicle screw-based dynamic stabilization devices for the lumbar spine. ArgoSpine News & Journal 04/2012; 21(2): 78-84
[17]Xan Courville, Joel Torretti, Dilip K. Sengupta, Dynamic Stabilization: Principles and Current Clinical Practice. Seminars in Spine Surgery , vol. 20, no. 2, pp. 146-153, 2008
[18]Goel V., Monroe B., Gilbertson L., et al. Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine 1995; 20: 689.
[19]Netter F.H., “Atlas Of Human Anatomy.2nd ed.,” ICON Learning Systems,(2002).
[20]Agazzi S., Reverdin A., May D., Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg. 1999; 91: 186–192.
[21]Enker P., Steffee A.D., Interbody fusion and instrumentation. Clin Orthop Relat Res. 1994; 300: 90–101.
[22]Lee CK., Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988; 13: 375-7
[23]Ghiselli G, Wang JC, Bhatia NN, et al. Adjacent segment degeneration in the lumbar spine. Journal of Bone & Joint Surgery – American Volume 2004; 86-A: 1497-503.
[24]Park P,Garton HJ, Gala VC, et al. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 2004; 1938-44.
[25]Aota Y, Kumano K, Hirabayashi S, Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders.Journal of Spinal Disorders 1995; 8: 464-73.
[26]William R. Sears, Ioannis G. Sergides, Noojan Kazemi, Mari Smith, Gavin J. White, Barbara Osburg, Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis. Journal of The Spine Journal, Vol. 11,pp 11-20, 2011
[27]Marsol-Puig A., Huguet-Comelles R., Escala-Arnau J., Gine-GomaJ., Incidence and risk factors of adjacent disc degeneration after lumbar fusion. Journal of Rev esp cir ortop traumatol, Vol. 55(3), pp 170-174, 2011
[28]Wilsa M. S. Charles Malveaux, and Alok D. Sharan, Adjacent Segment Disease After Lumbar Spine Fusion: A Systematic Review of the Current Literature. Journal of Spine Surgery, Vol. 23, pp 266-274, 2011
[29]Stoll TM, Dubois G, Schwarzenbach O. The Dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. European Spine Journal 2002;11 Suppl 2:S170-8.
[30]Bae HW, Pradhan B.B., Kanim L.E.A. Motion preserving dynamic posterior stabilization of the lumbar spine:early results from the US clinic trial with the Dynesys system. 52th ORS conference. Chicago:USA, 2006.
[31]Bothmann M, Kast E, Boldt GJ, et al. Dynesys fixation for lumbar spine degeneration. Neurosurgical Review 2008; 31: 189-96.
[32]Grob D, Benini A, Junge A, et al. Clinical Experience With the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-Oriented Outcome in 50 Cases After an Average of 2 Years. Spine 2005; 30: 324.
[33]Kumar A, Beastall J, Hughes J, et al. Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years. Spine 2008 ;33: 2909-14.
[34]Niosi C, Zhu Q, Wilson D, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. European Spine Journal 2006; 15: 913-22.
[35]Schmoelz W, Huber JF, Nydegger T,et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitri study of intradiscal pressure.European Spine Journal 2006; 15: 1276-85.
[36]Delank K-S, Gercek E, Kuhn S,et al. How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study. Archives of Orthopaedic & Trauma Surgery 2010; 130: 285-92.
[37]Eberlein R, Holzapfel G, Schulze-Bauer C. Assessment of a spinal implant by means of advanced FE modeling of intact human intervertebral discs. 2002.
[38]Rohlmann A, Burra N, Zander T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. European Spine Journal 2007; 16: 1223-31.
[39]Shin DS, Lee K, Kim D. Biomechanical study of lumbar spine with dynamic stabilization device using finite element method. CAD Computer Aided Design 2007; 39: 559-67.
[40]Tae-Ahn Jahng, MD, PhDa, Young Eun Kim, PhDb, Kyung Yun Moon, MD, Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis. The Spine Journal 2012.
[41]Zander T, Rohlmann A, Burra N, et al. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clinical Biomechanics 2006;21:767-74.
[42]Cheng BC, Gordon J, Cheng J, et al. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976). 2007 Nov 1; 32(23): 2551-7.
[43]Patrick Strube, Stephan Tohtz, Eike Hoff, et al. Dynamic stabilization adjacent to single-level fusion: Part I. Biomechanical effects on lumbar spinal motion. Eur Spine J. 2010 December; 19(12): 2171–2180.
[44]Schwarzenbach O, Rohrbach N, Berlemann U. Segment-by-segment stabilization for degenerative disc disease: a hybrid technique. Eur Spine J(2010) 19: 1010–1020.
[45]William R.S. Hudson, MD,; John Eric Gee, MD, et al. Hybrid dynamic stabilization with posterior spinal fusion in the lumbar spine. SAS Journal 5(2011) 36–43
[46]Ruberte LM, Natarajan RN, Andersson DB, Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—A finite element model study. Journal of Biomechanics 42 (2009) 341–348.
[47]Antonio E Castellvi, Hao Huang, Tov Vestgaarden, et al. Stress Reduction in Adjacent Level Discs via Dynamic Instrumentation: A Finite Element Analysis. SAS Journal. Spring 2007; 1: 74–81

QR CODE