簡易檢索 / 詳目顯示

研究生: 黃強
Chiang - Huang
論文名稱: 1kW二次側串聯諧振全橋直流/直流轉換器
A 1kW Full-Bridge DC/DC Converter with a Secondary-Side Series Resonant Tank
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 劉益華
Yi-Hua Liu
歐勝源
Sheng-Yuan Ou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 二次側串聯諧振式轉換器零電流切換切換頻率諧振頻率品質因數
外文關鍵詞: series resonant converter with a secondary-side, zero current switching, switching frequency, resonant frequency, quality factor
相關次數: 點閱:498下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研製一台適用低壓輸入、高壓輸出系統之1000W二次側諧振槽串聯諧振轉換器(Series Resonant Converter, SRC)。以往一般半橋式串聯諧振轉換器較適用於高壓輸入、低壓輸出系統,當應用在低壓輸入、高壓輸出系統時,負載反射至變壓器一次側之反射阻抗極小,當品質因數設計在較小值時,由於特性阻抗為反射阻抗與品質因數之乘積,所以特性阻抗將非常地小,導致諧振槽內之諧振元件不易設計。本論文將諧振槽置於變壓器二次側,如此將可改善諧振元件不易設計之問題。當二次側串聯諧振轉換器用於低壓輸入、高壓輸出系統時,一次側開關電流較大,因此適合操作在零電流切換區。由於切換頻率需小於諧振頻率,當輕載操作時輸出電壓無法有效地調變。針對此問題,本論文透過理論基礎及動作狀態分析,推導二次側串聯諧振轉換器各區間動作之數學模型,且用Mathcad模擬軟體解析增益函數與品質因數Q 值之間的關係,以變換切換頻率的方式解決輸出穩壓問題。最後運用市售之CM6900加上改變回授之外接電路,設計實作一1000W二次側諧振槽串聯諧振轉換器,輸入電壓12V、輸出電壓200V、輸出電流1.25 ~ 5A、功率開關切換頻率範圍為10 kHz ~ 65 kHz,能有效地調節輸出電壓使其維持在所需的規格範圍內。除了分析電路動作原理之外,並提供實驗數據與模擬和理論相互印證。


    This thesis focuses on the study and implementation of a 1000-W series resonant converter (SRC) with a secondary-side resonant tank. In general, a half-bridge SRC with primary-side resonant tank is adopted for the applications with high input voltages and low output voltages. When it is applied on the system with a low input voltage and high output voltage, the equivalent output load reflected from the secondary to the primary will be very small. If the quality factor is designed to be low, the characteristic impedance, which is equal to the gain of the quality factor and the reflected output load, will also be small. This causes difficulty in designing the resonant tank elements. The series resonant converter with secondary-side resonant tank can solve the design problem of resonant elements in this thesis. When the SRC with secondary-side resonant tank is suitable for low input voltage and high output voltage applications, the zero current switching can be easy to achieve because the primary switch current is high. When the SRC is operated at light load condition, its output voltage can’t be regulated well because the switching frequency is always less than the resonant frequency. This thesis aims to analyze the operating principle and derive the mathematic model for the studied series resonant converter with a secondary-side resonant tank. By using the simulation software Mathcad, the relationship between gain functions and quality factor is analyzed and discussed. A frequency modulation strategy is also used to regulate the output voltage. Finally, a laboratory prototype with 12V input, 200V output and 1.25A to 5A output current was built and tested to verify the feasibility of the proposed scheme, a commercial IC CM6900 with a simple auxiliary circuit was used to realize the studied control strategy. Good voltage regulation feature can be achieved according to the experimental results of the prototype circuit.

    摘 要 i Abstract ii 誌 謝 iv 目 錄 v 符號索引 vii 圖索引 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究步驟 2 1.3 全文內容編排方式 3 第二章 串聯諧振轉換器原理 4 2.1 理想RLC串聯電路 4 2.2 串聯諧振轉換器 6 2.3 LLC串聯諧振轉換器 7 2.3.1 Region-1之動作分析與數學模型 9 2.3.2 Region-2之動作分析與數學模型 19 第三章 二次側諧振槽串聯諧振轉換器 26 3.1 二次側諧振槽串聯諧振轉換器 26 3.1.1 Region-2之動作分析與數學模型 28 第四章 控制電路介紹 33 4.1 二次側諧振槽串聯轉換器之控制器分析 33 4.1.1 控制IC CM6900介紹 33 4.1.2 工作電壓 35 4.1.3 死域時間及工作頻率 35 4.1.4 穩壓控制法 36 4.2 修改之回授電路介紹 37 第五章 二次側諧振槽串聯諧振轉換器設計 40 5.1 二次側諧振槽之分析 40 5.1.1 SRC二次側諧振槽之分析 40 5.2 品質因數Q值對頻率響應的影響 41 5.2.1 二次側諧振槽SRC之頻率響應 41 5.3 二次側諧振槽串聯諧振轉換器設計流程 44 5.3.1 制訂規格 47 5.3.2 變壓器設計與製作 47 5.3.3 計算Lr與Cr之限制 48 5.3.4 選定Zo及計算Lr與Cr之值 48 5.4 二次側諧振槽串聯諧振轉換器設計範例 49 5.4.1 二次側諧振槽SRC操作於.ZCS的設計 49 第六章 電路模擬與實作結果 52 6.1 Simplis模擬結果 52 6.2 實作規格 56 6.3 電路實測結果與波形 56 6.3.1 二次側諧振槽SRC於ZCS的實測結果 56 6.4 理論、模擬與實作之比較 61 第七章 結論與未來展望 62 7.1 結論 62 7.2 未來研究方向 62 參考文獻 64

    [1] F. C. Lee, “High-Frequency Quasi-Resonant and Multi-Resonant Converter Technologies,“ IEEE IECON, pp. 509-521, 1988.
    [2] J. G. Cho, J. A. Sabate, and F. C. Lee, “Novel Full Bridge Zero-Voltage-Transition PWM DC/DC Converter for High Power Applications,” IEEE PESC, pp. 143-149, 1994.
    [3] J. Feng, Y. Hu, W. Chen, and C. C. Wen, “ZVS Analysis of Asymmetrical Half-Bridge Converter,” IEEE PESC, vol. 1, pp. 243-247, 2001.
    [4] J. W. Baek, J. G. Cho, D. W. Yoo, G.H. Rim, and H.G. Kim, “An Improved Zero Voltage and Zero Current Switching Full Bridge PWM Converter with Secondary Active Clamp, ” IEEE PESC, pp. 948-954. 1998.
    [5] C. M. Wang, “A New Family of Zero-Current-Switching (ZCS) PWM Converter,” IEEE Transactions on Industrial Electronics, Vol. 52, pp. 1117-1125, 2005.
    [6] A. K. S. Bhat, “Analysis and Design of a Modified Series Resonant Converter,” IEEE Transactions on Power Electronics, pp. 423-430, 1993.
    [7] J. P. Agrawal, K. siri, and C. Q. Lee, “Determination and Minimization of Cross Regulation in Multi-Output High Order SRC,” IEEE Trans Circuits and Systems, Vol. 1, pp. 692-695. 1990.
    [8] F. S. Tsai and F. C. Lee. “A Complete DC Characterization of a Constant-Frequency, Clamped-Mode, Series Resonant Converter,” IEEE PESC, pp. 987-996, 1988.
    [9] M. K. Kazimierczuk and S. Wong, “Frequency-Domain Analysis of Series Resonant Converter for Continuous Conduction Mode,” IEEE Transactions on Power Electronics, Vol. 6,no.pp. 270-279, 1992.
    [10] A. F. Hernandez, R. W. Erickson, S. Lofton, and P. Anderson, “A Large Signal Computer Model for the Series Resonant Converter,” IEEE PESC, pp. 737-744, 1991.
    [11] M. K. Kazimierczuk and D. Czarkowski, “Resonant Power Converters,” Wiley-Interscience publication, ISBN 0-471-04706-6.
    [12] S. C. Wong, A. D. Brown, Y. S. Lee, and S. W. Ng, “Parasitic Losses Modeling of a Series Resonant Converter Circuit,” IEEE Trans Circuits and Systems, Vol. 1, pp. 921-924, 1997.
    [13] 黃卓文,「半橋串聯諧振轉換器輕載非對稱單側責任週期調變策略研究」,國立台灣科技大學電子工程系研究所碩士論文,民國97年。
    [14] 黃崇華,「二次側諧振槽串聯諧振轉換器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國96年。
    [15] Michael Lee, ”CM6900 BICMOS Resonant Controller,”CM6900 Application Note A-001A, Champion Microelectronic Corporation, May, 2007.
    [16] R. Elferich and T. Duerbaum, “A New Load Resonant Dual Output Converter,” IEEE PESC, pp. 1319-1324, 2002.
    [17] R. Liu and C. Q. Lee, “Analysis and Design of LLC-type Series Resonant Converter,” IEE Proc. Vol. 24, pp. 1517-1519, 1988.

    [18] K. Siri and C. Q. Lee, “Constant Switching Frequency LLC-type Series Resonant Converter,” IEEE Trans Circuits and Systems, Vol. 1, pp. 513-516, 1989.
    [19] R. Liu, C. Q. Lee, and A. K. Upadhyay, “Experimental Study of the LLC-type Series Resonant Converter,“ IEEE APEC, pp. 31-37, 1990.
    [20] A. K. S. Bhat, “Analysis and Design of LCL-type Series Resonant Converter,” IEEE Transactions on Industrial Electronics, Vol. 41, pp. 118-124, 1994.
    [21] B. Yang, F. C. Lee, A. J. Zhang, and G. S. Huang, “LLC Resonant Converter for Front End DC/DC Conversion,” IEEE APEC, pp. 1108-1112, 2002.
    [22] B. Lu, W. Liu, Y. Liang, F. C. Lee, and J. D. Van Wyk, ”Optimal Design Methodology for LLC Resonant Converter,” IEEE APEC, pp. 533–538. 2006.
    [23] L. Yan, L. Wenduo, L. Bing, and D. J. Wyk, “Design of Integrated Passive Component for a 1MHz 1kW Half-Bridge LLC Resonant Converter,” IEEE IAC, pp. 2223-2228, 2005.
    [24] R. Liu, L. Batarseh, and C. Q. Lee, “Comparison of Performance Characteristics between LLC-type and Conventional Parallel Resonant Converters,” Electronics Letters, Vol. 24, pp. 1510-1511, 1988.
    [25] R. Cheng, Y. Yang, and Y. Jiang, “Design of LLC Resonant Converter with Integrated Magnetic Technology,” IEEE ICEMS,no. pp. 1351-1355, 2005.
    [26] Marian K. Kazimierczuk and Dariusz Czarkowski, “Resonant Power Converters,” 1995, John Wiley & Sons, Inc.
    [27] 顏上進,「串聯諧振轉換器輕載調制策略之研究」,國立台灣科技大學電子工程系研究所博士論文,民國95年。
    [28] 莊棋揚,「變動輸入電壓之半橋串聯諧振轉換器研製」,國立台灣科技大學電子工程系研究所碩士論文,民國97年。
    [29] 陳建宇,「二次側諧振槽串聯諧振轉換器頻率調變策略研究」,國立台灣科技大學電子工程系研究所碩士論文,民國99年。
    [30] 徐梓育,「250瓦推挽式二次側諧振槽串聯諧振轉換器頻」,國立台灣科技大學電子工程系研究所碩士論文,民國99年。

    無法下載圖示 全文公開日期 2016/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE