簡易檢索 / 詳目顯示

研究生: 白少懷
Shao-Huai Bai
論文名稱: 還原氧化石墨烯/超奈米鑽石與泡沫鎳複合結構之 擬電容特性分析
Reduced Graphene Oxide /N2 incorporated Ultra-Nano-Crystalline-Diamond on Nickel Foam for Pseudo-capacitors studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
施文欽
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 132
中文關鍵詞: 泡沫鎳還原氧化石墨烯超奈米鑽石超級電容器
外文關鍵詞: Nickel foam, Reduced graphene oxide, Ultrananocrystalline diamond, pseudo-capacitance
相關次數: 點閱:490下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本論文分為兩個部分,第一部分為主要探討以微波電漿化學氣相沉積法
(MPCVD)成長不同時間成長超奈米結晶鑽石的品質以及不同時間成長之還原氧
化石墨烯,並以泡沫鎳來當作工作電極,分別在泡沫鎳基板上沉積超奈米鑽石以
及結合還原氧化石墨烯,將其分別製作成電容電極元件來做分析;第二部分為成
長超奈米鑽石後經過氧電漿表面後處理,並加入還原氧化石墨烯溶液後,進一步
探討對於其擬電容性質分析,並分別進行物性及電性之分析。
經本研究發現,不同成長時間之超奈米鑽石經場發射掃描式電子顯微鏡分析
擁有不同晶粒尺寸與成膜性質,使用1M NaOH 水溶液做為電解質,可以得知成
長六分鐘超奈米鑽石比起成膜後的結構有較大的比表面積,有利於增加反應面積,
經過電性測量過後可以得出其電容值為163.3F/g。而經過不同時間成長之還原氧
化石墨烯溶液經拉曼光譜儀分析擁有不同缺陷程度,得知成長7.5 小時之還原氧
化石墨烯擁有較好的品質同時擁有較好的電性,其擬電容性質分析後得出其電容
值為408 F/g。
最後綜合將成長7.5 小時的還原氧化石墨烯與成長六分鐘的超奈米鑽石做複
合結構,因其有最佳披覆效果增加對於電解質的接觸面積,經測量後其電容值可
達875 F/g,而經由充放電測試後,其整體圖形接近對稱等腰三角形,說明其具
有良好的電化學可逆性;經過1000 圈循環伏安測試後,其電容還維持在88%,
也可說明此結構具有良好的循環穩定性。


Abstract
In this study, we used microwave systems to deposit ultra-nano diamonds on
nickel foam substrates. In addition, we use reduced graphene oxide to increase the
characteristics of pseudo-capacitors. This study is divided into two parts. The first part
is mainly to discuss the quality of ultra-nanocrystalline diamond, which was grown by
microwave plasma enhanced chemical vapor deposition (MPECVD) at different time
durations. And also focused on the preparation of glucose derived reduced graphene
oxide grown for different time durations at 200 ºC. We focus on the fabrication of
pseudo-capacitor using nanosized diamond material with glucose derived reduced
graphene oxide. The second part illustrates the oxygen plasma treatment on the
surface ultra-nanocrystalline diamond, and in addition with the reduced graphene
oxide solution. We explored the analysis of its pseudo-capacitance properties and
analyzed the physical and electrical properties separately.
According to the results, the nano-diamonds with different growth time have
different grain size and film-forming properties by field emission scanning electron
microscopy (FESEM). We used 1M NaOH aqueous solution as electrolyte, and it was
observed that the 6-minute growth of the ultra-nanocrystalline diamond has a larger
specific surface area than the structure after the film formation (i.e a film grown for
10 to 12 min). It possessed a highest specific capacitance of 163.3 F/g at a scan rate of
10 mV/s. Finally, we fabricate the materials using rGO-7.5hr/N-UNCD-6min for high
performance pseudo-capacitors. It has a capacitance value 875 F/g at a scan rate of 10
mV/s, and also has good cycle stability with capacitance retention of 88% after 1000
cycles. It also exhibited an outstanding electrochemical stability, and can be one of the
promising active materials in pseudo-capacitor applications.

目錄 中文摘要......................................................................................................................Ⅰ 英文摘要......................................................................................................................Ⅱ 致謝..............................................................................................................................Ⅲ 目錄..............................................................................................................................Ⅵ 圖目錄........................................................................................................................ XI 表目錄...................................................................................................................... XII 第一章緒論..............................................................................................................1 1.1 前言.................................................................................................................1 1.2 研究動機.........................................................................................................2 第二章文獻探討.....................................................................................................3 2.1 鑽石薄膜之特性簡介......................................................................................3 2.1.1 鑽石薄膜基本結構及性質...................................................................3 2.1.2 結晶鑽石成長機制..............................................................................4 2.1.3 鑽石成長結晶尺寸...............................................................................5 2.2 還原氧化石墨烯的特性簡介.........................................................................7 2.2.1 還原氧化石墨烯的結構與性質...........................................................7 2.2.2 還原氧化石墨烯製備方法...................................................................9 2.2.3還原氧化石墨稀的特性........................................................................9 2.3 超級電容器機制與種類............................................................................... 11 2.4 電化學分析法................................................................................................15 2.5 葡萄糖感測器................................................................................................16 2.5.1 葡萄糖感測發展世代.........................................................................16 V 2.5.2 葡萄糖感測器之檢測方式.................................................................18 第三章實驗方法..................................................................................................19 3.1 實驗設計與流程...........................................................................................19 3.2 製備之材料介紹...........................................................................................22 3.3 基板清洗.......................................................................................................23 3.4 微波電漿化學氣相沉積法成長奈米結晶鑽石...........................................24 3.5 水熱法(Hydrothermal method)成長還原氧化石墨烯.................................26 3.6 儀器設備與材料分析方法...........................................................................27 3.6.1 場發射掃描式電子顯微鏡(FE-SEM) .............................................27 3.6.2 拉曼光譜儀(Raman spectrum) ........................................................28 3.6.3 X 射線繞射儀(X-ray diffraction,XRD) ........................................29 3.6.4 電化學分析儀(Electrochemical Workstation) ..................................31 3.8 葡萄糖感測器試片封裝及循環伏安法表面改質........................................34 3.8.1 葡萄糖試片封裝................................................................................34 3.8.2 葡萄糖感測器表面改質....................................................................35 第四章還原氧化石墨烯/超奈米鑽石與泡沫鎳複合結構之擬電容特性 ......................................................................................................................................36 4.1 超奈米鑽石之特性分析..................................................................................36 4.1.1 表面型態分析....................................................................................36 4.1.2 拉曼光譜儀分析................................................................................38 4.1.3 X-ray 繞射儀分析..............................................................................39 4.1.4 循環伏安法分析................................................................................41 4.1.5 電化學阻抗測試................................................................................47 4.2 還原氧化石墨烯/超奈米鑽石與泡沫鎳複合結構之特性分析....................48 4.2.1 表面型態分析....................................................................................48 4.2.2 拉曼光譜儀分析................................................................................51 VI 4.2.3 X-ray 繞射儀分析..............................................................................55 4.2.4 循環伏安法分析................................................................................58 4.2.5 電化學阻抗測試................................................................................68 4.2.6 恆電流充放電分析............................................................................69 第五章超奈米鑽石與泡沫鎳結構之葡萄糖量測電化學分析..............74 5.1 超奈米鑽石與泡沫鎳結構之特性分析.......................................................74 5.1.1 表面型態分析....................................................................................74 5.1.2 超奈米鑽石與泡沫鎳之葡萄糖量測電化學分析............................76 5.1.2 表面改質............................................................................................76 5.1.3 循環伏安法分析................................................................................76 5.1.4 定電位沉積分析法..........................................................................77 5.2 超奈米鑽石與泡沫鎳結構之氧電漿後處理葡萄糖量測電化學分析.......80 5.2.1 表面型態分析....................................................................................80 5.2.2 超奈米鑽石與泡沫鎳結構之氧電漿後處理葡萄糖量測分析........84 5.2.1 表面改質............................................................................................84 5.2.2 循環伏安法分析................................................................................84 5.2.3 定電位沉積分析法..........................................................................85 5.3 超奈米鑽石與泡沫鎳結構之氧電漿後處理擬電容感測分析...................94 5.4 還原氧化石墨烯(7.5hr)/超奈米鑽石與泡沫鎳之氧電漿後處理擬電容感 測分析........................................................................................................100 第六章結論與未來展望..............................................................................107 6.1 結論.............................................................................................................107 6.2 未來展望..................................................................................................... 111 參考文獻................................................................................................................. 112

參考文獻
[1]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
[2]. 高瞻自然科學教學平台,x射線光電子能譜儀
http://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[3]. S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
[4]. Lin, C. R., et al. Development of high-performance UV detector using nanocrystalline diamond thin film. International Journal of Photoenergy (2014) 2014.
[5]. SuneetArora, V.D. Vankar, Field emission characteristics of microcrystalline diamond films:Effect of surface coverage and thickness Thin Solid Films (2006) 1963.
[6]. 曾永華、陳柏穎、鄭宇明、游銘永,”人造鑽石的合成及應用”,科學發展497期,一百零三年五月。
[7]. S.Matusumoto,Y.Sato,M.Kamo,and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys.(1992) 1562
[8]. Krauss, A. R., et al. "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices." Diamond and Related Materials 10.11(2001): 1952-1961.
[9]. Sankaran, K. J., et al. "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45.36 (2012): 365303.
[10]. KamatchiJothiramalingamSankaran Bohr‐Ran Huang AdhimoorthySaravananDivinahManoharanNyan‐Hwa Tai I.‐Nan Lin﹐’Nitrogen Incorporated Ultrananocrystalline Diamond Microstructures From Bias‐Enhanced Microwave N2/CH4‐Plasma Chemical Vapor Deposition’
[11]. S.Matusumoto,Y.Sato,M.Kamo,and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys.(1992) 1562
[12]. B. C. Brodie et al., Philos. Trans. R. Soc. London, 149, 249 (1959)
[13]. Brodie, B. Note surun Nouveau Procede pour la Purification et la Pesagregation du Graphite. Ann. Chim. Phys.1855, 45, 351–353.
[14]. H. He et al., Chem. Phys. Lett., 287, 53 (1998)
[15]. M. Chhowalla et al., Nature Chem. (2010)
[16]. J. Ito et al., J. Appl. Phys., 103, 113712 (2008)
[17]. M. Chhowalla et al., Nature Chem. (2010)
[18]. J. William et al., J. Am. Chem. Soc., 80, 1339 (1958)
[19]. Y. Xu et al., J. Am. Chem. Soc., 130, 5856 (2008)
[20]. G. Eda et al., Adv. Mater.,22,2392 (2010)
[21]. W.F. Chen, L.F. Yan, P.R. Bangal. Carbon, 48 (2010), p. 1146-1152
[22]. D.H. Du, P.C. Li, J.Y. Ouyang. ACS Appl. Mater. Interfaces, 7 (2015), p. 26952-26958
[23]. G. Eda et al., Nature Nanotech., 3, 210 (2008)
[24]. http://newsletter.sinica.edu.tw/file/file/61/6133.pdf.
[25]. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim,H.L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146 (2008)351-355.
[26]. WufengChen. et al, CarbonVolume 48, Issue 4, April 2010, Pages 1146-1152.
[27]. High-Pulse Power needs spur demand for Supercapacitor ,Electronic Engineering Times (April 16 2001), p99, p108, p110.
[28]. H. A. Andreas, B. E. Conway, “Examination of the double-layer capacitanceof an high specific-area C-cloth electrodes as titrated from acidicto alkaline pHs”, ElectrochimicaActa, 51, 6510-6520 (2006).
[29]. I. Tanahashi, A. Yoshida, A. Nishino, “Preparation and Characterizationof Activated Carbon Tablets for Electric Double Layer Capacitors”,Bulletin of the Chemical Society of Japan, 63, 2755-2758 (1990).
[30]. XiaolanPeng, WenYuan, JiaxiuZou, BingWang, WenyuanHu, YingXiong, Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performancesElectrochimica Acta, Volume 257, 10 December 2017, Pages 504-509
[31]. R. Kotz, M. Carlen, Electrochim. Acta, 45 (2000) 2483.
[32]. F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, S. Sang, “In situ fabrication ofnickel aluminum-layered double hydroxide nanosheets/hollow carbonnanofibers composites as a novel electrode material for supercapacitors”,
[33]. Journal of Power Sources, 267, 188-196 (2014).
[34]. MajidMirzaee, Changiz, Dehghanian, KazemSabetBokati, One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor
[35]. MajidMirzaee, Changiz, Dehghanian, KazemSabet Bokati,One-step electrodeposition of reduced graphene oxide on three-dimensional porous nano nickel-copper foam electrode and its use in supercapacitor
[36]. F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, S. Sang, “In situ fabrication ofnickel aluminum-layered double hydroxide nanosheets/hollow carbonnanofibers composites as a novel electrode material for supercapacitors”,Journal of Power Sources, 267, 188-196 (2014).
[37]. E. Conway, “Electrochemical Super capacitor,” Kluwer-Plenum, New York(1999)
[38]. Yong Zhang, HuiFeng, Xingbing Wu, Lizhen Wang, Aiqin Zhang, Tongchi Xia, Huichao Dong, Xiaofeng Li, Linsen Zhang, “Progress of electrochemical capacitor electrode materials: A review,” International Journal of Hydrogen Energy, 34 [11] (2009) 4889–4899.
[39]. 劉茂煌,循環伏安法,http://www.teachers.fju.edu.tw/files/981/981015-1.pdf
[40]. 循環伏安法,http://m.instrument.com.cn/bbs/d-4866861-1.html
[41]. TarusheeAhujaa, Irfan Ahmad Mira, Devendra Kumara, Rajeshb, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials ,28 (2007) 791–805
[42]. Kathryn E. Toghill and Richard G. Compton, Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci., 5 (2010) 1246 – 1301
[43]. 張紘銓、張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
[44]. 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003
[45]. 蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007
[46]. 國立台灣科技大學,貴重儀器中心
[47]. 國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
[48]. 國立台灣科技大學X光繞射實驗室
[49]. 利用環電位儀偵測氧化還原電位及電流http://140.136.176.3/joom/data/menu/files/exp/CV
[50]. M. Toupin, T. Brousse, and D. Belanger, ‘‘Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor,’’Chem. Mater., vol. 16,pp.3184-3190, 2004.
[51]. A. Yu, I. Roes, A. Davies,and Z. Chen, ‘‘Ultrathin, transparent,and flexible graphene films for supercapacitor application,’’Appl.PhysLett., vol.96,pp. 253105-3,2010.
[52]. Sankaran, KamatchiJothiramalingam, et al. Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment. ACS applied materials & interfaces 616 (2014) 14543-14551.
[53]. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim,Raman Spectrum of Graphene and Graphene Layers,Phys. Rev. Lett. 97, 187401(2006)
[54]. W. Wu et al.,Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing,Sensors and Actuators B:Chemical,150 (2010) 296-300
[55]. HangyuLong,XuezhangLiu,YounengXie,NaixiuHu,ZejunDeng,YunluJiang,QiupingWei,ZhimingYu,ShugenZhang, Thickness effects of Ni on the modified boron doped diamond by thermal catalytic etching for non-enzymatic glucose sensing, Journal of Electroanalytical Chemistry Volume 832, 1 January 2019, Pages 353-360
[56]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[57]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[58]. CanLiaTingZhao,QiupingWei,ZejunDeng,HangyuLong,KuangzhiZheng,HaichaoLiaYaohuaGuo,Zhiming Yu,LiMa,KechaoZhou,NanHuang,Cheng-TeLinc, The effect of heat treatment time on the carbon-coated nickel nanoparticles modified boron-doped diamond composite electrode for non-enzymatic glucose sensing, Journal of Electroanalytical Chemistry,Volume 841, 15 May 2019, Pages 148-157
[59]. Bohr-Ran Huang, Meng-Jiy Wang,Deepa Kathiravan,Alfin Kurniawan,Hong-Hui Zhang, and Wen-Luh Yang, Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient onenzymatic Glucose Sensor,Applied Bio Materials,2018,1579-1586
[60]. ZejunDeng,HangyuLong,QiupingWei,ZhimingYu,BoZhouaYijiaWang,LongZhang,ShashaLi,LiMa,YounengXie,JieMin, High-performance non-enzymatic glucose sensor based on nickel-microcrystalline graphite-boron doped diamond complex electrode, Sensors and Actuators B: Chemical Volume 242, April 2017, Pages 825-834
[61]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[62]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[63]. Ejikeme Raphael Ezeigwe,Michelle T.T.Tan,Poi SimKhiew,Chiu WeeSiong, Solvothermal synthesis of graphene–MnO2 nanocomposites and their electrochemical behavior, Ceramics International, Volume 41, Issue 9, Part A, November 2015, Pages 11418-11427
[64]. Akbar Mohammadi, Zardkhoshoui, Saied Saeed Hosseiny Davarani, Flexible asymmetric supercapacitors based on CuO@MnO2-rGO and MoS2-rGO with ultrahigh energy density, Journal of Electroanalytical Chemistry Volume 827, 15 October 2018, Pages 221-229
[65]. Police Anil Kumar Reddy, Chennaiahgari Manvitha, Rajender Boddula, S.V. PrabhakarVattikuti, MandariKotesh Kumar, Chan, and Byon”Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications” Materials
Research Bulletin, Volume 98, February 2018, Pages 314-321.

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE