簡易檢索 / 詳目顯示

研究生: 莊宗穎
Tsung-Ying Cuanng
論文名稱: 縮小型電動巴士主動控制探討
Investigations of the Active Control for a Scaled Electric Bus
指導教授: 陳亮光
Liang-kuang Chen
口試委員: 姜嘉瑞
Chia-Jui Chiang
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 後輪轉向最佳化控制車輛動力學車輛橫向平面穩定性
外文關鍵詞: rear wheel steering, optimal control, vehicle dynamics, vehicle yaw plane stability
相關次數: 點閱:183下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是以大型電動巴士為車輛安全控制的討論對象,此巴士與一般的車輛架構不同,並不是單一個驅動引擎的配置,而是搭載了八個馬達,此配置方式能讓每個輪子具有獨立驅動與轉向的能力,利用這樣的特性可以提升車輛駕駛的穩定性並達到安全控制的目的。
車輛行駛時,車身狀態會隨著駕駛情境而有所改變,並不是固定的數值,當車輛動態在急迫操控的情境下,如:高速轉彎時會發生側滑現象,此現象會影響車輛的偏航穩定程度,可能會導致車身狀態偏離線性模型過多,而依據線性模型設計的控制器是否仍能穩健的達成控制目的仍有待釐清。雖然大型巴士車輛的翻覆現象是一個很重要的議題,但是本研究並未探討,本研究只採用後輪轉向作為改善偏航平面穩定的控制手段,進而做到車輛安全的控制目的。以LQ控制作為提升車輛安全的初期設計之控制方法,將後輪轉向角做為控制輸入,其中,透過觀察車輛動態的參數變化來確定偏離線性模型的影響程度,因此嘗試以SDLQ作為解決方案來提高車輛的安全與穩定性。此方案的作法是讓控制器接收當下的車身狀態,並依循新的狀態,去算出符合新狀態的控制命令。研究中,透過線性模型與TruckSim軟體分析比較,探討如何設計控制器與模擬。透過後輪轉向控制,在某些趨於臨界操控的情況下,驗證SDLQ的車輛動態表現是否會比LQ控制具備更好的車輛偏航穩定性,其結果表示在濕滑的情況下,SDLQ會比LQ更能夠去抑制偏航平面的極值數值,但是整體表現與LQ無異。
為了觀察實際的控制器表現,由於現實層面的考量,無法以實際的巴士車輛來進行測試,因此整備了一縮小比例約1/3且具備四輪獨立驅動、轉向功能之電動車實驗平台,但是要獲得車子的側向速度分量是困難的,需要在空曠無遮蔽的場地使用高精度的全球定位系統(GPS)的感測模組搭配慣性感測模組(IMU),才有辦法獲得。然而,在本校校園內,此量測並不容易進行,目前整備了直流馬達控制以及控制器的能並驗證了所需要的感測器的感測功能。


This research is based on electric bus as the vehicle safety control discussion object. This bus is different from the general vehicle architecture. It is not a single engine configuration, but is equipped with eight motors. This configuration allows each wheel to have The ability of independent driving and steering can improve the stability of vehicle driving and achieve the purpose of safety control.
When the vehicle is running, the vehicle state will change with the driving situation, and it is not a fixed value. When the vehicle dynamics is in a situation of urgent control, such as: sideslip phenomenon occurs when turning at a high speed, this phenomenon will affect the deviation of the vehicle, and may cause the vehicle state to deviate too much from the linear model, and it remains to be clarified whether the controller designed based on the linear model can still achieve the control objective steadily. Although the overturning phenomenon of large buses is a very important topic, this research did not discuss it. This research only uses rear-wheel steering as a control method to improve the stability of the yaw plane, thereby achieving vehicle safety control purposes. LQ control is used as the control method of the initial design to improve vehicle safety, and the rear-wheel steering angle is used as the control input. Among them, the degree of influence of deviation from the linear model is determined by observing the parameter changes of vehicle dynamics. Therefore, SDLQ is tried as a solution. To improve the safety and stability of the vehicle. The method of this scheme is to let the controller receive the current body state and follow the new state to calculate the control command that meets the new state. In the research, through the analysis and comparison of the linear model and TruckSim software, how to design the controller and simulation is discussed. Through the rear-wheel steering control, in certain situations that tend to be critical, it is verified whether the dynamic performance of the SDLQ vehicle will have better vehicle yaw stability than the LQ control. The result indicates that in the case of wet and slippery, SDLQ will It can suppress the extreme value of the yaw plane better than LQ, but the overall performance is no different from LQ.
In order to observe the actual controller performance, due to practical considerations, it is impossible to test with actual buses. Therefore, an electric vehicle experimental platform with a scale down about 1/3 and four-wheel independent driving and steering functions has been prepared. It is difficult to obtain the lateral velocity component of the car, and it is necessary to use a high-precision global positioning system (GPS) sensing module with an inertial sensing module (IMU) in an open and unobstructed venue. However, this measurement is not easy to perform on the campus of our school. At present, the DC motor control and controller functions have been prepared and the sensing function of the required sensor has been verified.

摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.2.1後輪轉向(RWS)控制相關文獻 2 1.2.2 LQ控制與時變系統 3 1.3 研究目的 4 1.4 論文架構 4 第二章 車輛模型與TruckSim車輛設定 5 2.1 二自由度車輛模型 5 2.2 TruckSim建模 7 2.2.1 TruckSim S_Function之設定 8 2.2.2 輪胎轉向剛性的設定 10 2.3 TruckSim S_Function 後輪輸入訊號定義 12 第三章 模型變化與後輪控制法之模擬與分析 17 3.1 模型不確定性之探討 17 3.1.1 加大車速與車輛慣性對模型變化之影響 19 3.1.2 道路摩擦係數對模型變化之影響 20 3.1.3 輪胎受力情況對模型變化之影響 22 3.2 標準情況下,不同後輪轉向計算之特性與差異 26 3.2.1 TruckSim (TS 控制) 26 3.2.2 LQ回授 27 3.2.3 車輛主動運動控制 (VEHICLE ACTIVE MOTION CONTROLS,VAMC) 30 3.2.4 不同的後輪轉向角計算模擬與討論 30 3.3 狀態相依LQ回授控制(SDLQ)之驗證 31 第四章 縮小型電動巴士之實驗平台建置 36 4.1電動車硬體設計架構 37 4.1.1 動力與轉向 39 4.1.2 嵌入式系統 40 4.1.3感測模組 41 4.2 電動巴士車輛控制程式架構 43 4.2.1 高階控制器 43 4.2.2 低階控制器 44 4.3 目前成果 46 第五章 結論與未來展望 66 5.1 結論 66 5.2 未來展望 66 參考文獻 67 附錄 72 附錄一 符號涵義 72 附錄二 情境一(Case 1)與情境二(Case 2)與標準情境的車輛狀態差異 74 附錄三 B1-2 存檔與讀檔的詳細操作 76

[1]. https://crossing.cw.com.tw/blogTopic.action?id=713&nid=8433

[2]. http://pm25.colife.org.tw/

[3]. https://reurl.cc/vnNk9y

[4]. 江應平(2018)。電動巴士之主動式安全控制器設計。國立臺灣科技大學機械工程系碩士論文,台北市。

[5]. 安浩宇(2018)。藉由後輪轉向控制增進聯結車行駛與轉向穩定性。國立臺灣科技大學機械工程系碩士論文,台北市。

[6]Furukawa, Y., Yuhara, N., Sano, S., Takeda, H., & Matsushita, Y. (1989). A review of four-wheel steering studies from the viewpoint of vehicle dynamics and control. Vehicle System Dynamics, 18(1-3), 151-186.

[7]. J. Ackermann,(1994). Robust Decoupling, Ideal Steering Dynamics and Yaw Stabilization of 4WS Cars, Automatica, vol. 30, no. 11, pp.1761-1768.

[8]. Nagai, M., Hirano, Y., & Yamanaka, S. (1997). Integrated control of active rear wheel steering and direct yaw moment control. Vehicle System Dynamics, 27(5-6), 357-370.

[9]. Tianjun, Z., & Changfu, Z. (2009). Research on control algorithm for DYC and integrated control with 4WS. In Computational Intelligence and Natural Computing, 2009. CINC'09. International Conference on (Vol. 2, pp. 166-169). IEEE.

[10]. Li, B., & Yu, F. (2009). Optimal model following control of four-wheel active steering vehicle. In Information and Automation, 2009. ICIA'09. International Conference on (pp. 881-886). IEEE.

[11]. Nam, K., Fujimoto, H., & Hori, Y. (2012). Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Transactions on Vehicular Technology, 61(5), 1972-1985.

[12]. M. abe, (1999). Vehicle dynamics and control for improving handling and active safety: from four-wheel steering to direct yaw moment control, Proc. Insn. Mech. Engrs.,vol. 213, Part K, pp. 87-101.

[13]. V.Nikzad. S. and M. Naraghi, (2002). Model Reference Tracking Control of A 4WS Vehicle Using Single and Dual Steering Strategies, SAE 2002 Transactions, Journal of Passenger Cars : Mechanical Systems, no. 2002-01-1590, pp.1841-1851.

[14]. Chang, S., Xu, H. G., & Liu, H. F. (2009). Simulation on steering stability of 4WS tractor semi-trailer. In Measuring Technology and Mechatronics Automation, 2009. ICMTMA'09. International Conference on (Vol. 2, pp. 355-358).

[15]. An, S. J., Yi, K., Jung, G., Lee, K. I., & Kim, Y. W. (2008). Desired yaw rate and steering control method during cornering for a six-wheeled vehicle. International Journal of Automotive Technology, 9(2), 173-181.

[16]. Gao, L., Jin, L., Wang, F., Zheng, Y., & Li, K. (2015). Genetic algorithm–based varying parameter linear quadratic regulator control for four-wheel independent steering vehicle. Advances in Mechanical Engineering.

[17]. Jiang, Z., Xiao, B.,(2018). LQR optimal control research for four-wheel steering forklift based-on state feedback. J Mech Sci Technol 32, 2789–2801.

[18]. Ariff, Hatta & Zamzuri, Hairi & Nordin, M.A.M. & Yahya, Wira & Mazlan, Saiful & Abdul Rahman, Mohd Azizi. (2015). Optimal control strategy for low speed and high speed four-wheel-active steering vehicle. Journal of Mechanical Engineering and Sciences. 8. 1516-1528.

[19]. Fahimi, F. (2013). Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles. Vehicle System Dynamics, 51(3), 360-376

[20]. Tian, Jie; Ding, Jie; Tai, Yongpeng; Chen, Ning. (2018). Hierarchical Control of Nonlinear Active Four-Wheel-Steering Vehicles. Energies. 11(11): 2930.

[21]. Haiyan, H., Qiang, H.,(2003). Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles. Acta Mech Sinica 19, 79–88.

[22]. Meng, Q., Sun, Z. & Li, Y.,(2018). Finite-time Controller Design for Four-wheel-steering of Electric Vehicle Driven by Four In-wheel Motors. Int. J. Control Autom. Syst. 16, 1814–1823

[23]. Lv, H.-M., Chen, N., & Li, P. (2004). Multi-objective H∞ optimal control for four-wheel steering vehicle based on yaw rate tracking. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(10), 1117–1123.

[24]. Spentzas, Konstantinos & Alkhazali, Ibrahim & Demic, Miroslav. (2001). Kinematics of four-wheel-steering vehicles. Forschung im Ingenieurwesen. 66. 211-216.

[25]. Singh, Arun & Kumar, Abhishek & Chaudhary, Rajiv & Singh, R.. (2014). Study of 4 Wheel Steering Systems to Reduce Turning Radius and Increase Stability.

[26]. Minh, Vu. (2012). VEHICLE STEERING DYNAMIC CALCULATION AND SIMULATION.

[27]. Jin, Lisheng & Gao, Linlin & Jiang, Yuying & Chen, Mei & Zheng, Yi & Li, Keyong. (2017). Research on the control and coordination of four-wheel independent driving/steering electric vehicle. Advances in Mechanical Engineering. 9. 168781401769887.

[28]. Yingmin Jia, "Robust control with decoupling performance for steering and traction of 4WS vehicles under velocity-varying motion," in IEEE Transactions on Control Systems Technology, vol. 8, no. 3, pp. 554-569, May 2000.

[29] Prato, G. D. and A. Ichikawa (1990). "Quadratic Control for Linear Time-Varying Systems." 28(2): 359-381.

[30] Chen, M., and Kao, C. (September 1, 1997). "Control of Linear Time-Varying Systems Using Forward Riccati Equation." ASME. J. Dyn. Sys., Meas., Control. September 1997; 119(3): 536–540.

[31] H. Jaddu and E. Shimemura, "Computation of optimal feedback gains for time-varying LQ optimal control," Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), Philadelphia, PA, USA, 1998, pp. 3101-3102 vol.5

[32] Bryson, A.E, (1999). Time-Varying Linear-Quadratic Control. Journal of Optimization Theory and Applications 100, 515–525.

[33] Kristoffer Kvam, Kohei Ohtsu, Thor I. Fossen, (2000). Optimal Ship Maneuvering Using Bryson and Ho’s Time Varying LQ Controller,IFAC Proceedings Volumes,Volume 33, Issue 21, Pages 341-346,ISSN 1474-6670

[34] Yao, L., Zhang, J., (2002).Sampled-data-based LQ control of stochastic linear continuous-time systems. Sci China Ser F 45, 383–396

[35] H. Oya and Y. Uehara, (2012). Synthesis of variable gain controllers based on LQ optimal control for a class of uncertain linear systems, Proceedings of 2012 UKACC International Conference on Control, Cardiff, pp. 87-91

[36]. Reza N. Jazar (2008). Vehicle Dynamics. Theory and Application, Springer

[37]. Rajesh Rajamani. (2006). Vehicle Dynamics and Control, Springer US

[38]. Masato Abe. (2009). Vehicle Handling Dynamics: Theory and Application, Butterworth-Heinemann

[39]. Wang, Rongrong & Wang, Junmin. (2013). Tire–road friction coefficient and tire cornering stiffness estimation based on longitudinal tire force difference generation. Control Engineering Practice. 21. 65–75. 10.1016/j.conengprac.2012.09.009.

[40]. Giancarlo Genta. (1997). Motor Vehicle Dynamics Modeling and Simulation, World Scientific Publishing Co. Pte. Ltd.

[41]. http://www.ni.com/pdf/products/us/fullcriodevguide.pdf

[42]. https://cdn.sparkfun.com/assets/learn_tutorials/8/5/6/SparkFun_ZED-F9P_RTK.jpg

[43]. https://www.sparkfun.com/products/13284

[44]. https://www.digikey.tw/zh/articles/techzone/2018/nov/rotary-encoder-options-absolute-or-incremental

[45]. https://cht.nahua.com.tw/encoder/hollow/eht-rhb/eht-rhb.pdf

[46]. https://www.fa.omron.com.cn/data_pdf/cat/e6a2-c_ds_e_7_1_csm490.pdf?id=486

[47]. https://www.youtube.com/watch?v=QSjUdOOlCxk

[48]. https://www.youtube.com/watch?v=FpkUXmM7mrc&t=404s&fbclid=IwAR2vLq4uxou223ZtyoMA8iShK8rhsPRfgg7gXRmY-cbyq6OD2yk_ATFbsDI

QR CODE