簡易檢索 / 詳目顯示

研究生: 張祐瑞
You-Rui Zhang
論文名稱: 利用深度學習與合成資料實現胸部X光片之外來物與骨骼影像消除
Chest X-ray Artifact and Bone Shadow Reduction with Deep Learning and Synthesized Data
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 呂政修
蔡佳醍
力博宏
陳維美
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 53
中文關鍵詞: 深度學習雜訊消除模型胸部X光片外來物影像消除骨骼影像消除電腦輔助診斷系統
外文關鍵詞: Deep Learning, De-noising Model, Chest X-Ray, Artifacts Reduction, Bone Shadow Reduction, Computer-Aided Diagnostic
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要........................................................................................................................ I ABSTRACT..........................................................................................................II 誌謝......................................................................................................................III 目錄......................................................................................................................IV 圖目錄...................................................................................................................V 表目錄..................................................................................................................VI 第 1 章 緒論....................................................................................................1 1.1 研究背景與動機................................................................................1 1.2 研究目的............................................................................................3 1.3 章節摘要............................................................................................3 第 2 章 技術背景與相關研究........................................................................4 2.1 技術背景............................................................................................4 2.2 相關研究............................................................................................6 第 3 章 實驗設計..........................................................................................10 3.1 雜訊消除模型..................................................................................10 3.2 圖片相似度估計..............................................................................13 3.3 實驗流程..........................................................................................16 第 4 章 實驗結果..........................................................................................23 4.1 硬體設備介紹..................................................................................23 4.2 軟體工具介紹..................................................................................23 4.3 外來物消除網路..............................................................................24 4.4 外來物與骨骼消除網路..................................................................35 4.5 概念驗證........................................................................................40 第 5 章 結論................................................................................................42 5.1 本文貢獻........................................................................................42 5.2 未來工作........................................................................................42 參考資料..............................................................................................................43

    [1] D. -P. Fan et al., "Inf-Net: Automatic COVID-19 Lung Infection Segmentation
    From CT Images," in IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp.
    2626-2637, Aug. 2020, doi: 10.1109/TMI.2020.2996645.
    [2] A. Waheed, M. Goyal, D. Gupta, A. Khanna, F. Al-Turjman and P. R. Pinheiro,
    "CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved
    Covid-19 Detection," in IEEE Access, vol. 8, pp. 91916-91923, 2020, doi:
    10.1109/ACCESS.2020.2994762.
    [3] X. Wang et al., "A Weakly-Supervised Framework for COVID-19 Classification
    and Lesion Localization From Chest CT," in IEEE Transactions on Medical
    Imaging, vol. 39, no. 8, pp. 2615-2625, Aug. 2020, doi:
    10.1109/TMI.2020.2995965.
    [4] S. Roy et al., "Deep Learning for Classification and Localization of COVID-19
    Markers in Point-of-Care Lung Ultrasound," in IEEE Transactions on Medical
    Imaging, vol. 39, no. 8, pp. 2676-2687, Aug. 2020, doi:
    10.1109/TMI.2020.2994459.
    [5] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for
    Large-Scale Image Recognition. CoRR, abs/1409.1556.
    [6] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inceptionv4, inception-resnet and the impact of residual connections on learning. In Thirtyfirst AAAI conference on artificial intelligence.
    [7] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
    recognition. In Proceedings of the IEEE conference on computer vision and
    pattern recognition (pp. 770-778).
    [8] J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A largescale hierarchical image database," 2009 IEEE Conference on Computer Vision
    and Pattern Recognition, 2009, pp. 248-255, doi: 10.1109/CVPR.2009.5206848.
    [9] Heidari, M., Mirniaharikandehei, S., Khuzani, A. Z., Danala, G., Qiu, Y., & Zheng,
    B. (2020). Improving the performance of CNN to predict the likelihood of
    COVID-19 using chest X-ray images with preprocessing algorithms. International
    journal of medical informatics, 144, 104284.
    [10] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
    applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    [11] Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., & Lin, C. W. (2020). Deep learning
    on image denoising: An overview. Neural Networks, 131, 251-275.
    [12] Majumdar, A. (2018). Blind denoising autoencoder. IEEE transactions on neural
    44
    networks and learning systems, 30(1), 312-317.
    [13] Fonseca, A. U., Oliveira, L. L., Mombach, J., Fernandes, D. S., Salvini, R., &
    Soares, F. (2020, August). Foreign artifacts detection on pediatric chest X-ray. In
    2020 IEEE Canadian Conference on Electrical and Computer Engineering
    (CCECE) (pp. 1-4). IEEE.
    [14] Hogeweg, L., Sánchez, C. I., Melendez, J., Maduskar, P., Story, A., Hayward, A.,
    & van Ginneken, B. (2013). Foreign object detection and removal to improve
    automated analysis of chest radiographs. Medical physics, 40(7), 071901.
    [15] Hogeweg, L., Sánchez, C. I., & van Ginneken, B. (2013). Suppression of
    translucent elongated structures: applications in chest radiography. IEEE
    transactions on medical imaging, 32(11), 2099-2113.
    [16] Gusarev, M., Kuleev, R., Khan, A., Rivera, A. R., & Khattak, A. M. (2017, August).
    Deep learning models for bone suppression in chest radiographs. In 2017 IEEE
    Conference on Computational Intelligence in Bioinformatics and Computational
    Biology (CIBCB) (pp. 1-7). IEEE.
    [17] Rajaraman, S., Zamzmi, G., Folio, L., Alderson, P., & Antani, S. (2021). Chest xray bone suppression for improving classification of tuberculosis-consistent
    findings. Diagnostics, 11(5), 840.
    [18] Lin, C., Tang, R., Lin, D. D., Liu, L., Lu, J., Chen, Y., ... & Zhou, J. (2020, April).
    Deep Feature Disentanglement Learning for Bone Suppression in Chest
    Radiographs. In 2020 IEEE 17th International Symposium on Biomedical Imaging
    (ISBI) (pp. 795-798). IEEE.
    [19] Lee, D., Kim, H., Choi, B., & Kim, H. J. (2019). Development of a deep neural
    network for generating synthetic dual-energy chest x-ray images with single x-ray
    exposure. Physics in Medicine & Biology, 64(11), 115017.
    [20] Kim, K., & Myung, H. (2018). Autoencoder-combined generative adversarial
    networks for synthetic image data generation and detection of jellyfish swarm.
    IEEE Access, 6, 54207-54214.
    [21] Duffy, B. A., Toga, A. W., & Kim, H. (2020, April). Gradient Artifact Correction
    for Simultaneous EEG-fMRI using Denoising Autoencoders. In 2020 IEEE 17th
    International Symposium on Biomedical Imaging (ISBI) (pp. 1-4). IEEE.
    [22] Adeel, H., Riaz, M. M., & Ali, S. S. (2022). De-Fencing and Multi-Focus Fusion
    Using Markov Random Field and Image Inpainting. IEEE Access, 10, 35992-
    36005.
    [23] Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian
    denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on
    image processing, 26(7), 3142-3155.
    [24] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep
    45
    network training by reducing internal covariate shift. In International conference
    on machine learning (pp. 448-456). PMLR.
    [25] Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2018). Residual dense network
    for image super-resolution. In Proceedings of the IEEE conference on computer
    vision and pattern recognition (pp. 2472-2481).
    [26] Zhang, Y., Tian, Y., Kong, Y., Zhong, B., & Fu, Y. (2020). Residual dense network
    for image restoration. IEEE Transactions on Pattern Analysis and Machine
    Intelligence, 43(7), 2480-2495.
    [27] Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale
    structural similarity for image quality assessment. In The Thrity-Seventh Asilomar
    Conference on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1398-1402). Ieee.
    [28] Wang, Z., & Bovik, A. C. (2009). Mean squared error: Love it or leave it? A new
    look at signal fidelity measures. IEEE signal processing magazine, 26(1), 98-117.
    [29] Van Der Jeught, S., Muyshondt, P. G., & Lobato, I. (2021). Optimized loss function
    in deep learning profilometry for improved prediction performance. Journal of
    Physics: Photonics, 3(2), 024014.
    [30] Johnson, J., Alahi, A., & Fei-Fei, L. (2016, October). Perceptual losses for realtime style transfer and super-resolution. In European conference on computer
    vision (pp. 694-711). Springer, Cham.
    [31] Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization. Graphics
    gems, 474-485.
    [32] Loog, M., van Ginneken, B., & Schilham, A. M. (2006). Filter learning:
    application to suppression of bony structures from chest radiographs. Medical
    image analysis, 10(6), 826-840.
    [33] Chen, Y., Gou, X., Feng, X., Liu, Y., Qin, G., Feng, Q., ... & Chen, W. (2019).
    Bone suppression of chest radiographs with cascaded convolutional networks in
    wavelet domain. IEEE Access, 7, 8346-8357.
    [34] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
    semantic segmentation. In Proceedings of the IEEE conference on computer vision
    and pattern recognition (pp. 3431-3440).
    [35] Uggla, G., & Horemuz, M. (2021). Towards synthesized training data for semantic
    segmentation of mobile laser scanning point clouds: Generating level crossings
    from real and synthetic point cloud samples. Automation in Construction, 130,
    103839.
    [36] Deng, L. (2012). The mnist database of handwritten digit images for machine
    learning research. IEEE Signal Processing Magazine, 29(6), 141–142.
    [37] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
    recognition. In Proceedings of the IEEE conference on computer vision and
    46
    pattern recognition (pp. 770-778).
    [38] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
    connected convolutional networks. In Proceedings of the IEEE conference on
    computer vision and pattern recognition (pp. 4700-4708).
    [39] Zhao, H., Gallo, O., Frosio, I., & Kautz, J. (2015). Loss functions for neural
    networks for image processing. arXiv preprint arXiv:1511.08861.
    [40] Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y.
    (2018). Very deep convolutional neural networks for complex land cover mapping
    using multispectral remote sensing imagery. Remote Sensing, 10(7), 1119.

    無法下載圖示 全文公開日期 2025/08/17 (校內網路)
    全文公開日期 2025/08/17 (校外網路)
    全文公開日期 2025/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE