簡易檢索 / 詳目顯示

研究生: 吳書漢
Shu-Han Wu
論文名稱: II-VI族量子點敏化型氧化鋅奈米柱光陽極之界面性質討論
The interfacial properties study of II-VI quantum dots sensitized zinc oxide nanorods photoanode
指導教授: 陳良益
Liang-Yih Chen
口試委員: 劉進興
Chin-Hsin J. Liu
吳季珍
Jih-Jen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 氧化鋅水熱法
外文關鍵詞: ZnO, hydrothermal method
相關次數: 點閱:406下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用水熱法以醋酸鋅、六甲基四胺以及聚乙烯亞胺作為反應物,在90oC下,成長高順向性氧化鋅奈米柱於氧化銦錫透明導電玻璃基板上,並且探討聚乙烯亞胺對氧化鋅奈米柱徑像和軸向成長的影響。在量子點披覆於氧化鋅奈米柱表面的實驗方面,則選用3-MPA與11-MUA這兩種具有雙官能基的分子先改質氧化鋅表面,再將硒化鎘量子點接於氧化鋅表面。在被覆狀態的研究上,以穿透式電子顯微鏡進行觀察,並藉由測量載子生命週期來探討量子點照光後載子注入至氧化鋅的情形,並配合循環伏安法分析連接分子的最高填滿軌域,推測載子在氧化鋅與量子點界面間的傳遞行為。
另外,有關水熱法成長的氧化鋅奈米柱的載子濃度,則使用阻抗分析進行測量。這些研究結果對於日後研發量子點敏化太陽能電池以及改質配位基的選擇有著很高的應用價值。


In this study, hydrothermal method was employed to grow well-aligned zinc oxide (ZnO) nanorods on ITO/glass substrate using zinc acetate dihydrate, hexamethylenetetramine (HMTA) and polyethyleneimine (PEI) as reactants. The growth rate in length and diameter of ZnO nanorods were studied by Field-emission scanning electron microscope (FE-SEM) when polyethyleneimine was added. In order to anchor quantum dots on the surface of ZnO nanorods, bifunctional group molecules of 3-mercaptopropionic acid and 11-mercaptoundecanoic acid with carboxyl and thiol functional groups were used to modify the surface of ZnO nanorods. The coverage of CdSe quantum dots (QDs) on ZnO nanorods was characterized by transmission Electron Microscope. In order to understand the detail of carrier transfer between CdSe QDs and ZnO nanorods, carrier lifetime measurement was used. Cyclic voltammetry analysis could help to measure the energy level of linker molecule and CdSe QDs to deduce carrier transfer between CdSe quantum dots and ZnO nanorods. We also try to measure carrier concentration of ZnO nanorods grown by hydrothermal method by impedance analysis.

目錄 中文摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 4 第二章 理論基礎與文獻回顧 5 2-1 氧化鋅的基本性質與應用 5 2-2 垂直型氧化鋅奈米柱之成長 9 2-3 成長氧化鋅奈米線的方法 11 2-3-1 高溫爐化學氣相沉積法 11 2-3-2 水熱法 12 2-3-3電泳模板法 14 2-4 以水熱法成長氧化鋅奈米柱之成長機制 17 2-5 量子點之特性 18 2-5-1 量子侷限效應 18 2-5-2 衝擊離子化效應與歐傑再結合效應 18 2-6 載子生命週期與結合機制 20 2-7 交流阻抗與等效電路圖 22 2-8 一維氧化鋅奈米材料在太陽能電池上的應用 29 第三章 實驗方法與步驟 33 3-1 實驗流程圖 33 3-2 實驗藥品與設備儀器 34 3-2-1 藥品/耗材名稱 34 3-2-2 實驗設備 37 3-2-3 分析儀器 37 3-3 實驗步驟 47 3-3-1 基板清洗 47 3-3-2 氧化鋅膠體溶液之配製 47 3-3-3 晶種層之製備 48 3-3-4 成長氧化鋅奈米柱 48 3-3-5量子點之製備方式 48 3-3-6 以量子點修飾氧化鋅奈米柱 49 3-3-7 電池組裝 49 第四章 結果與討論 51 4-1 添加聚乙烯亞胺對氧化鋅奈米線成長速率的影響 51 4-2 以硒化鎘量子點披覆氧化鋅奈米柱的結果與分析 63 4-2-1 紫外光光譜與光致激發螢光光譜分析 63 4-2-2 載子生命週期 67 4-2-3 循環伏安法分析3-MPA與11-MUA 71 4-2-4 穿透式電子顯微鏡分析量子點的吸附 75 4-2-5 光電轉換效率量測 84 4-3 以水熱法成長氧化鋅奈米柱之阻抗分析 86 第五章 結論 87 第六章 參考文獻 89

[1] L. H. Sung, K. B. Sung, K. H. Mi, W. J. Sub, N. S. Wook, J. K. Bae, A. Yoshihiro, K. K. Bum, Adv. Mater. 19, 4189 (2007).
[2] C. McAlpine, S. Friedman, M. Lieber, Nano Lett. 3, 443 (2003).
[3] Q. Cao, H. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers, Nature, 454, 495 (2008).
[4] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, Science, 302, 1377 (2003).
[5] Q. Sun, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. A. Wang, Y. Li, Nature Photonics, 1, 717 (2007).
[6] J. K. Song, J. M. Szarko, S. R. Leone, S. Li, and Y. Zhao, J. Phys. Chem. B, 109, 15749 (2005).
[7] B. O’Regan and M. Grätzel, Nature, 353, 737 (1991).
[8] J. M. Kroon, N. J. Bakker, H. J. P. Smit, P. Liska, K. R. Thampi, P. Wang, S. M. Zakeeruddin, M. Grätzel, A. Hinsch, S. Hore, U. Wurfel, R. Sastrawan, J. R. Durrant, E. Palomares, H. Pettersson, T. Gruszecki, J. Walter, K. Skupien and G. E. Tulloch, Prog. Photovoltaics,15, 1 (2007).
[9] M. K. Nazeeruddin, F. DeAngelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005).
[10] M. Grätzel, Inorg. Chem. 44, 6841 (2005).
[11] Y. Chiba, A. Islam, R. Komiya, N. Koide and L. Y. Han, Appl. Phys. Lett. 88, 223505 (2006).
[12] Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara, Chem. Mater. 18, 2912 (2006)
[13] M. D. Wei, Y. Konishi, H. S. Zhou, M. Yanagida, H. Sugihara and H. Arakawa, J. Mater. Chem. 16, 1287 (2006).
[14] R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).
[15] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros, Nano Lett. 5, 865 (2005).
[16] R. D. Schaller, M. A. Petruska, V. I. Klimov, Appl. Phys. Lett. 87, 253102 (2005).
[17] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. R. Yu, O. I. Micic, R. J. Ellingson, A. J. Nozik, J. Am. Chem. Soc. 128, 3241 (2006).
[18] R. Ro, S. Y. Chang, R.C. Hwang and D. H. Lee, Proc, Natl. Sci. Counc. 23, 810 (1999).
[19] X. Wang, J. Zhang and Z. Zhu, Applied Surface Science, 252, 2404 (2006).
[20] K. Yim and C. Lee, Cryst. Res. Technol. 41, 1198 (2006).
[21] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis and G. Kiriakidis, Science Direct, 515, 551 (2006).
[22] Q. Wang, Q. H. Li, Y. J.Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett. 84, 3654 (2004).
[23] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science, 292, 1897 (2001).
[24] J. Goldberger, D. J. Sirbuly, M. Law and P. D. Yang, J. Phys. Chem. B, 109, 9 (2005).
[25] H. Kind, H. Q. Yan, B. Messer, M. Law and P. D. Yang, Adv. Mater. 14, 158 (2002).
[26] G. Elena and R. Jonathan, J. Phys. Chem. B, 110, 16159 (2006).
[27] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang and M. Muhammed, J. Phys. Chem. B, 101, 2598 (1997).
[28] Meyer, B, Marx, Dominik, Physical Review B, 67, 3 (2003).
[29] W. J. Li, E. W. Shi, W. Z. Zhong, Z.W. Yin, J. Cryst. Growth, 203, 186 (1999).
[30] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. P. Zhu and B. H. Zhao, Appl. Surf. Sci. 250, 280 (2005).
[31] A. Zeuner, H. Alves, D.M. Hofmenn, and B.K. Meyer, Appl. Phys. Lett. 80, 2078 (2002).
[32] C. Y. Lee, T. Y. Tseng, S. Y. Li and P. Lin, Tamkang Journal of Science and Engineering, 6, 127 (2003).
[33] Y. C. Wang, I. C. Leu and M. H. Hon, J. Mater. Chem. 12, 2439 (2002).
[34] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 270, 1791 (1995).
[35] L. Vayssieres, Adv. Mater. 15, 464, (2003).
[36] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, Chem. Mater. 13, 4395 (2001).
[37] L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).
[38] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Chem. Mater. 17, 1001 (2005).
[39] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. D. Yang, Angew. Chem. Int. Ed. 42, 3031 (2003).
[40] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, J. Mater. Chem. 14, 2575 (2004).
[41] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, Second Edition
[42] M. Grätzel, Nature, 414, 338 (2001).
[43] M. Law, L. Greene, J. C. Johnson, R. Sayally and P.D. Yang, Nature Material, 4, 455 (2005).
[44] C. H. Ku and J. J. Wu, Appl. Phys. Lett. 91, 093117 (2007).
[45] C. H. Ku, H. H. Yang, G. R. Chen, and J. J. Wu, Cryst. Growth Des. 8, 283 (2008).
[46] H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai, and W. F. Hsieh, J. Phys. Chem. C, 112, 16359 (2008).
[47] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter,U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007).
[48] D. W. Bahnemann, C. Kormann and M. R. Hoffmann, J. Phys. Chem. 91, 3789 (1987).
[49] E. M. Wong, J. E. Bonevich, and P. C. Searson, J. Phys. Chem. B, 102, 7770 (1998).
[50] E. M. Wong, P. G. Hoertz, C. J. Liang, B. M. Shi, G. J. Meyer, P. C. Searson, Langmuir, 17, 8362 (2001).
[51] Y. Zhou, W. Wu, G. Hu, H. Wu, S. Cui, Mater. Res. Bulletin, 43, 2113 (2008).
[52] W. Wu, G. Hu, S. Cui, Y. Zhou, and H. Wu, Cryst. Growth Des. 8, 4014 (2008).
[53] B. Liu and H. C. Zeng, J. Am. Chem. Soc. 125, 4430 (2003).
[54] S. C. Liou, C. S. Hsiao, S. Y. Chen, J. Cryst. Growth, 274, 438 (2005).
[55] C. Bullen and P. Mulvaney, Langmuir, 22, 3007 (2006).
[56] M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, J. Chem. Phys. 96, 946 (1991).
[57] X. Wang, L. Qu, J. Zhang, X. Peng, and M. Xiao, Nano Lett. 3, 1103 (2003).
[58] Y. Nonoguchi, T. Nakashima,and T. Kawai, J. Phys. Chem. C, 112, 19263 (2008).

QR CODE