簡易檢索 / 詳目顯示

研究生: 陳抒妙
Shu-Miao Chen
論文名稱: 1064 nm窄線寬摻鐿光纖雷射光源之實現與量測
Implementation and Measurement of 1064 nm Narrow Linewidth Ytterbium-Doped Fiber Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 呂海涵
Hai-Han Lu
王立康
Li-Kang Wang
陳建光
Jian-Guang Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 1064 nm摻鐿光纖雷射窄線寬雷射環形雷射拉曼光源摻鐿光纖放大器生醫檢測
外文關鍵詞: 1064 nm Ytterbium-Doped fiber laser, narrow linewidth laser, Ring laser, Raman laser, Ytterbium-Doped fiber amplifier, Biomedical diagnostics
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今人口逐漸成高齡化趨勢,未來的醫療美容以及醫療生醫檢測需求會急遽攀升。拉曼光源在生物醫學檢測中的應用十分重要,因每種物質皆有獨特的拉曼光譜特徵,這些特徵可以用於鑒別和分析生物分子,例如蛋白質、含氧血、碳水化合物等。透過對比樣本的拉曼光譜,可以確定病理變化和疾病相關標誌物的存在,從而實現疾病的監測和早期治療。而拉曼檢測光源又以雷射應用形式最為廣泛,不論醫美或是生醫檢測所要求之雷射光源,線寬大小會是一項重點,因為愈精小的雷射光源應用出來的範圍也愈精細。
本論文將研製1064 nm窄線寬光纖雷射,原先建構的1064 nm窄線寬架構線寬量測值為36 kHz,後來改變了子環腔架構的排列組合,使兩個光耦合器並聯,再使用一個光耦合器讓50 %的光進入至三個子環腔裡震盪,50 %進入到主環,此情況可以使功率及單頻抑制的更加穩定,線寬相對也會更窄,並且壓縮至23 kHz,此時的電流功率再結合拉曼光譜儀成一套拉曼檢測系統。
並針對葡萄糖水、去離子水、自來水等水溶液進行量測。為了與商用拉曼頻譜儀作比較,這裡使用市售拉曼光源檢測設備同樣作了實驗,此顯微拉曼的光源輸出功率為25 mW,中心波長為514.5 nm,量測出的結果在葡萄糖水中觀察到2900 cm-1處有明顯的散射產生,與自來水與去離子水比較起來,符合烷烴類組成的特徵峰值。且各水溶液皆在3300 cm-1- 3400 cm-1處擁有共同的特徵峰值,代表水分子中的氫原子和氧原子間共價鍵的伸縮及彎曲振動,與市售拉曼儀器相比完,若未來設備善將能量測出更精確數值。


The current population is gradually experiencing an aging trend, and the demand for medical aesthetics and biomedical diagnostics in the future will increase rapidly. The application of Raman spectroscopy in biomedical diagnostics is crucial because each substance has unique Raman spectral characteristics. These features can be used to identify and analyze biomolecules such as proteins, oxygenated blood, carbohydrates, etc. By comparing the Raman spectral of reference samples, it is possible to determine pathological changes and the presence of disease-related biomarkers, enabling disease monitoring and early treatment.Laser sources are widely used in Raman spectroscopy, whether in medical aesthetics or biomedical diagnostics. The linewidth of the laser source is an important factor because a finer laser source allows for more precise applications.
This paper aims to develop a 1064 nm narrow linewidth fiber laser. The initial constructed architecture had a linewidth measurement value of 36 kHz. However, changes were made to the arrangement of the sub-cavity structure by parallelizing two optical couplers and using another optical coupler to split 50% of the light into three SRCs for oscillation while the remaining 50% entered the main cavity. This configuration improved power stability, single-frequency suppression, and resulted in a narrower linewidth, ultimately compressing it to 23 kHz. The developed 1064 nm narrow linewidth ring laser, combined with a first-stage Ytterbium-Doped fiber amplifier, formed a 1064 nm narrow linewidth laser. When the driving current of the second-stage amplifier's pump laser was set to 1 A, the laser output power reached 105.6 mW. By fixing the driving current of the Ytterbium amplifier's pump laser source at 600 mA, the light source output was 55 mW. This current power, combined with a Raman spectrometer, formed a Raman detection system.
Measurements were performed on aqueous solutions such as glucose solution, DI water, and tap water. To compare with a commercial Raman spectrometer, experiments were also conducted using a commercially available Raman light source detection device. The output power of the microscope Raman light source was 25 mW, with a central wavelength of 514.5 nm. Significant scattering was observed at 2900 cm-1 in the glucose solution, consistent with characteristic peaks of alkane compositions when compared to tap water and DI water. Additionally, all the aqueous solutions exhibited common characteristic peaks at 3300 cm-1 to 3400 cm-1, representing the stretching and bending vibrations of covalent bonds between hydrogen and oxygen atoms in water molecules. When compared to the commercially available Raman instrument, the future device may be capable of measuring more accurate values.

摘要 II Abstract VI 誌謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖雷射與光主被動元件 4 2.1 光纖雷射 4 2.1.1 光纖雷射原理 4 2.1.2 摻鐿光纖雷射原理 7 2.2 半導體雷射 9 2.2.1 半導體雷射起源 9 2.2.2 法布里珀羅雷射 10 2.2.3 分布式反饋型雷射 11 2.2.4 垂直腔面發射型雷射(VCSEL) 11 2.3 被動元件簡介 12 2.3.1 偏振相關隔離器 12 2.3.2 光耦合器 13 2.3.3 光循環器 14 2.3.4 布拉格光柵 15 2.3.5 極化控制器 16 2.4 文獻探討 17 第三章 窄線寬光纖雷射 22 3.1 量測雷射線寬方法 22 3.1.1 外差檢測 22 3.1.2 延遲自內差檢測 23 3.1.3 延遲自外差檢測測 24 3.2 半導體光放大器雷射特性與量測 24 3.2.1 半導體光放大器介紹 24 3.2.2 半導體光放大器特性量測與探討 25 3.3 窄線寬光纖雷射研製 28 3.3.1 雷射參數設定 28 3.3.2 光纖雷射架構與量測 31 3.3.3 環形光纖雷射特性量測 33 3.3.4 線寬量測架構 37 3.3.5 線寬量測結果 42 第四章 1064 nm窄線寬光纖雷射摻鐿放大器 45 4.1 窄線寬光纖雷射架構改善 45 4.1.1 窄線寬光纖雷射架構 45 4.1.2 線寬量測結果 48 4.2 環形1064 nm窄線寬雷射光源之拉曼光譜儀研製 50 4.2.1 建構1064 nm光纖雷射光源之放大級架構 50 4.2.2 結合1064 nm拉曼光源及放大級架構 52 第五章 1064 nm窄線寬光源結合拉曼檢測系統 54 5.1 拉曼光譜儀 54 5.1.1 514.5 nm拉曼光譜儀應用與介紹 55 5.1.2 514.5 nm拉曼頻譜實驗 57 5.2 1064 nm拉曼光譜儀 59 5.2.1 1064 nm窄線寬拉曼光源 59 5.2.2 1064 nm拉曼光頻譜實驗與分析 60 第六章 結論與未來展望 66 6.1 結論 66 6.2 未來展望 67 參考文獻 69

[1] Y. You, Q. Yunfeng, H. Bing, S. Hui, Z. Xingxing, and L. Meizhong, " Principles and development of active polarization control technology for fiber lasers," Laser Optoelectron. Prog., vol. 56, 2019.
[2] H. Andersen and L. Rehn, " Nuclear instruments and methods in physics research section b-beam interactions with materials and atoms," Nucl. Instrum. Methods Phys. Res., vol. 84, p. 5, 1994.
[3] L. Zhang, J. Wang, X. Gu, and Y. Feng, "A linearly-polarized tunable Yb-doped fiber laser using a polarization dependent fiber loop mirror," Opt. Commun., vol. 258, p.2410, 2012.
[4] Y. J. Chiang, C. S. Hsiao, and L. Wang, " Optimization of Erbium-doped fiber MOPA laser," Opt. Commun., vol. 283, p. 1055, 2010.
[5] P. Kronenberg and O. Traxer, "The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review,"Transl. Androl. Urol., vol. 8, p. 398, 2019.
[6] Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci., vol. 62, p. 041301, 2019.
[7] M. V. Andres, J. L. Cruz, A. Die, P. P. Millan, and M. D. Pinar, " Actively Q-switched all-fiber lasers," Laser Phys Lett., vol. 5, p. 93, 2008.
[8] L. R. Cobo, R. R. Lombera, M. A. Quintela, J. Mirapeix, and J. M. L. Higuera, " Single longitudinal mode fiber ring laser," Opt Laser Technol., vol. 107, p. 361, 2018.
[9] O. Xu, S. Lu, S. Feng, Z. Tan, T. Ning, and S. Jian, "Single-longitudinal-mode Erbium-doped fiber laser with the fiber-Bragg-grating-based asymmetric two-cavity structure," Opt. Commun., vol. 282, p. 962, 2009.
[10] C. Barned, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J Quantum Electron., vol. 30, p. 1817, 1994.
[11] S. B. Cho, H. Song, S. Gee, C. S. Park, and D. Y. Kim, "Pulse width and peak power optimization in a mode-locked fiber laser with a semiconductor saturable absorber mirror," Micro opt techn let., vol. 54, p. 2256, 2012.
[12] L. Li and K. Petermann, "Conversion efficiency and bandwidth of THz optical frequency conversion in a semiconductor laser," IEEE PROCEEDINGS-J OPTOELECTRONICS, vol. 140, p.260, 1993.
[13] C. sheng-ping, "Multi-wavelength Yb-doped fiber-ring laser," WILEY, vol. 36, 2003.
[14] S. Kuhn, M. Tiegel, A. Herrmann, J. Korner, R. Seifert, F. Yue, D. Klopfel, J. Hein, M. C. Kaluza, and C. Russel, "Effect of hydroxyl concentration on Yb3+ luminescence properties in a peraluminous lithium-alumino-silicate glass," Opt. Mater. Express., vol. 5, p. 430, 2015.
[15] Y. Emre, "Nonlinear frequency conversion of light inside a microcavity," Turkish J. Phys., vol. 43, p. 221, 2019.
[16] D. Hu, D, Sun, Z. Shu, M. Shangguan, Y. Gao, and X. Dou, " Mobile incoherent Doppler lidar using fiber-based lidar receivers, "Opt. Eng., vol. 53, p. 093106, 2014.
[17] C. Xianfeng, Z. Yuanlin, L. Haigang, L. Shijie and L. Yuanhua, " New principle, platform, and application of nonlinear frequency conversion," CHINESE LASER PRESS, vol. 41, 2021.
[18] L. P. Xue, Z. S. Zhen, Z. X. Xia, and L. Gang, "A 980 nm Yb-doped single-mode fibre laser with 946 nm Nd:YAG laser as pump source," Chin. Phys. B., vol. 19, p. 74211, 2010.
[19] J. Mompart, V. Ahufinger, R. Corbalan, and F. Prati, "Propagation effects on lasing without population inversion," J. Phys. B., vol. 2, p. 359, 2000.
[20] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," IEEE., vol. 35, p. 101, 1999.
[21] L. Chen, G. Yang, and Y. Liu, " Development of semiconductor lasers," CHINESE JOURNAL OF LASERS-ZHONGGUO, vol. 47, 2020.
[22] R. Gorden, "Fabry-Perot semiconductor laser injection locking," IEEE J Quantum Electron., vol. 42, p. 353, 2006.
[23] Y. Tang, M. Feng, J. Liu, S. Fan, X. Sun, Q. Sun, S. Zhang, T. Liu, Y. Kong, Z. Huang, M. Ikeda, and H. Yang, "Narrow-linewidth GaN-on-Si laser diode with slot gratings," Nanomaterials., vol. 11, p. 3092, 2021.
[24] T. Matsuoka and K. Iwashita, "History of distributed feedback laser," IEEE History of Telecommunications Conference, HISTELCON, p. 127, 2017.
[25] B. G. Lee, M. A. Belkin, C. Pfluegl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corine, G. E. Hofler, and F. Capasso, " DFB quantum cascade laser arrays," IEEE J Quantum Electron., vol. 45, p. 554, 2009.
[26] A. Liu, P. Wolf, J. A. Lott, and D. Bimberg, "Vertical-cavity surface-emitting lasers for data communication and sensing," Photonics Res., vol. 7, p. 121, 2019.
[27] R. Kruszka, M. Ekielski, K. Golaszewska, K. K. Mille, Z. Sidor, M. Wzorek, D. Pierscinska, R. Sarzala, T. Cyszanowski, and A. Piotorowska, " GaAs/AlGaAs photonic crystals for VCSEL-type semiconductor lasers," OPTO-ELECTRON REV., vol. 19, p. 51, 2011.
[28] J. P. Adam, J. C. Joly, B. Pecqueux, and D. Asfaux, "The reciprocity theorem applied to finding the best coupling incidence," C. R. Phys., vol. 10, p. 65, 2009.
[29] Y. C. Liang and F. P. S. Chin, "Coherent LMS algorithms," IEEE Commun. Lett., vol. 4, p. 92, 2000.
[30] D. Wang, Q. Wang, Y. Jiang, and L. Li, "Study of a multi-ring cavity based single-frequency fiber laser and associated thermal effects," Opt. Fiber Technol., vol. 60, p. 102376, 2020.
[31] 游易霖, "光纖光柵之光纖模組研發及應用, "國立臺灣科技大學博士學位論文, 2013.
[32] J. Li, Z. Wang, Z. Yu, L. Lianhui, X. Yang, and L. He, "Wavelength modulation-based active laser heterodyne spectroscopy for standoff gas detection," MICROW OPT TECHN LET., vol. 65, p. 1261, 2023.
[33] H. Ludvigsen, M. Tossavainen, and M. Kaivola, "Laser linewidth measurements using self-homodyne detection with short delay," Opt. Commun., vol. 155, p. 180, 1998.
[34] J. Gao, D. Jiao, X. Deng, Q. Zang, X. Zhang, D. Wang, X. Zhang, and T. Liu, "Laser linewidth measurement based on recirculating self-heterodyne method with short fiber," Acta Opt. Sin., vol. 41, p. 27118, 2021.
[35] Y. Ding, Q. Kan, J. L. Wang, J. Q. Pan, F. Zhou, W. X. Chen, and W. Wang, "Broad-band semiconductor optical amplifiers," J. Lumin., vol. 122, p. 208, 2007.
[36] Q. Qian, S. Liu, W. Wan, and W. Sun, "Reliability concern on extended E-SOA of SOI power devices with P-Sink structures," IEEE Trans Device Mater Reliab., vol. 13, p. 161, 2013.
[37] R. Alferness, L. Buhl, U. Koren, T. Koch, I. Kim, B. Miller, M. Newkirk, M. Young, R. Gnall, F. Herandegil, H. M. Presby, G. Raybon, and C. A. Burrus, "Integrated MQW optical amplifier/noise-filter/photodetector photonic circuit," IEEE Photon. Technol. Lett., vol. 5, p. 1401, 1993.
[38] S. Legoubin, M. Douay, P. Bernage, P. Niay, S. Boj, and E. Delevaqde, "Free spectral range variations of grating-based Fabry–Perot filters photowritten in optical fibers," J Opt Soc Am A., vol. 12, p. 1687, 1995.
[39] G. Griffel, "Vernier effect in asymmetrical ring resonator arrays," IEEE Photon. Technol. Lett., vol. 12, p. 1642, 2000.
[40] F. G. Xing, D. Zhang, and H. F. Zhang, "Polarization rotator between the linear polarization and the circular polarization based on the layered photonic structure," Ann Phys., vol. 534, p. 2200270, 2022.
[41] Z. Qi, L. Rui, W. Nan, Z Tingting and C. Xueli, "Research progress of raman spectroscopy in medical laboratory science, " Acta Photonica Sinica, vol. 50, 2021.
[42] T. Zhong-qun, R. Bin, W. De-yin, M. Bing-wei and X. Yun-feng, "Progress of laser raman spectroscopy in the study of electro chemical interfaces, "Journal of X iamen University (Natural Science), vol. 40, 2001.

無法下載圖示 全文公開日期 2025/08/08 (校內網路)
全文公開日期 2025/08/08 (校外網路)
全文公開日期 2025/08/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE