簡易檢索 / 詳目顯示

研究生: 郭家銘
Jia-Ming Kuo
論文名稱: 利用靜電紡絲技術及氬氣微波電漿處理製備碳化鐵複合材料 (Fe3C/Fe@C) 應用於電催化氧氣還原反應
Preparation of iron carbide composite (Fe3C/Fe@C) by electrospinning via argon microwave plasma treatment for electrochemical oxygen reduction reaction (ORR)
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 徐振哲
Cheng-Che Hsu
陳建彰
Jian-Zhang Chen
劉志宏
Chi-Hung Liu
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 149
中文關鍵詞: 靜電紡絲微波電漿碳化鐵電催化氧氣還原反應
外文關鍵詞: Electrospinning, Microwave plasma, Iron carbide, Electrochemical oxygen reduction reaction
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

世界人口快速成長與能源大量消耗,導致化石燃料的缺乏和全球溫室效應等問題亟需解決。為了減少溫室氣體的排放,迫切需要可以取代的能源,燃料電池作為一種綠色能源,近年來得到許多發展,歸因於不產生二氧化碳的反應過程。為了開發環境友善以及可持續使用的能源系統,氧氣還原反應 (oxygen reduction reaction, ORR) 是非常重要的反應之一,因此開發能夠有效促使氧氣還原反應的電催化劑至為重要。
對於ORR,“四電子” 的轉移路徑能夠使氧氣還原成水。儘管鉑基材料的催化劑具有最佳的ORR性能,但由於昂貴的成本與稀缺性,使其在應用中仍受到限制。因此,許多研究團隊致力於開發高效能、低成本、以及穩定性佳的替代催化劑方案。其中,過渡金屬系列中的鐵元素,本身資源豐富且成本低廉,常被作為ORR電催化劑的選擇之一。
本研究藉由微波電漿處理電紡絲纖維,製備碳化鐵複合材料 (Fe3C/Fe@C)。將鐵元素修飾於聚乙烯吡咯烷酮 (polyvinylpyrrolidone, PVP) 與聚丙烯腈 (polyacrylonitrile, PAN) 中,利用靜電紡絲製備聚合物纖維,再藉由微波電漿處理還原鐵離子,以取代傳統耗時耗能的熱處理方式。利用場發射掃描式電子顯微鏡、X光繞射分析、以及拉曼光譜儀,對樣本進行分析。為了探討ORR的性能,在電化學的測量中,使用三極式的電解槽與旋轉環盤電極,利用循環伏安法 (cyclic voltammetry, CV) 和線性掃描伏安法 (linear sweep voltammetry, LSV) 在鹼性環境下分析,完成電漿參數最適化。同時探討不同高分子纖維載體對ORR性能的影響,例如高分子的選擇 (PVP vs PAN)、酸洗處理、以及電漿後處理。
研究結果顯示,使用氬氣微波電漿處理,只需要12分鐘的處理時間,施加100 mA的電流、0公分的樣本處理位置,0.5 torr的工作壓力,即可有效地製備Fe3C/Fe@C複合材料。在ORR的性能方面,PVP/Fe(0.2M)-0cm-Ar12具有最佳的結果,其電子轉移數在0.05 - 0.80 V vs. RHE的電位勢能範圍內為3.2 - 3.7,並呈現凹狀曲線。此外,透過氧氣析出反應 (oxygen evolution reaction, OER) 研究其電催化活性,在1.73 V vs. RHE的電位勢能下,電流密度達到10 mA cm-2。因此,本研究展示微波電漿處理在碳化鐵的製備和ORR應用方面的效率以及後續應用的巨大潛力。


The exponentially growth of population relates closely to the energy consumption and generation of wastes in different forms such that lacks of fossil fuels and global greenhouse effects are problems to solve. To reduce the emission of greenhouse gas, the alternative energy source is of urgent need such that fuel cells, one type of green energy, are developed recently due to its environmentally friendly and no generation of carbon dioxide. For the development of green and sustainable energy systems, oxygen reduction reaction (ORR) is one of the important reactions where efficient electrocatalysts are highly desired for application in energy devices.
For ORR, four-electron transfer pathway is desired that, the oxygen can be reduced to the water. Although, the platinum-based catalyst showed the best ORR results, the limits remain due to its high costs and scarcity. Therefore, research groups have dedicated in developing alternative catalysts with highly efficient, low-cost, and stability. Among them, transition metal iron is often selected to prepare carbides for ORR as electrocatalysts because of its abundant and lost cost.
In this study, iron carbide composite (Fe3C/Fe@C) was prepared by microwave plasma treatment on electrospun fibers. The iron elements are introduced into polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) and the polymer fibers were prepared by electrospinning. After that, the microwave plasma is applied to reduce iron ions, which can replace conventional time-consuming and energy-intensive thermal treatment. The as-prepared samples are analyzed by field-emission scanning electron microscopy, X-ray diffraction, and Raman spectroscopy to determine its characteristics. To investigate the performance of ORR, the electrochemical measurements are carried out by using three-electrode cell and rotating ring-disk electrode. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) are applied under alkaline environment to optimize plasma parameters. Furthermore, the influence of ORR performance is explored by using different polymers (PVP vs PAN) as fiber carriers, acid leaching treatment, and plasma post-treatment.
The results of this study showed that iron carbide composite (Fe3C/Fe@C) can be effectively prepared by argon microwave plasma treatment in only 12 minutes with 100 mA of applied power, 0 cm of treatment distance, and 0.5 torr of working pressure. For the performance of ORR, PVP/Fe(0.2M)-0cm-Ar12 revealed the best results, which have the number of electron transfer in the range of 3.2 to 3.7 with concave shape under 0.05 to 0.80 V vs. RHE of applied potential. Furthermore, the electrocatalytic activity investigated by oxygen evolution reaction (OER) reported the current density of 10 mA cm-2 under 1.73 V vs. RHE of applied potential. The great potential of microwave plasma treatment for the preparation of iron carbide for the applications of ORR is therefore demonstrated.

摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XX 第一章 緒論 1 第二章 文獻回顧 3 2.1 奈米材料在氧氣還原反應的表現 3 2.2 多功能性奈米纖維製備技術 8 2.3 電漿技術 14 第三章 實驗裝置和實驗原理 22 3.1 實驗藥品 22 3.2 實驗儀器與實驗原理 23 3.2.1 靜電紡絲系統 (electrospinning) 23 3.2.2 微波電漿火炬化學氣相沉積系統 (microwave plasma torch enhanced CVD) 24 3.2.3 氧氣還原反應 (oxygen reduction reaction, ORR) 25 3.3 實驗製程 27 3.3.1 製備含鐵離子之PVP纖維 (PVP/Fe fibers) 27 3.3.2 製備含鐵離子之PAN纖維 (PAN/Fe fibers) 27 3.3.3 微波電漿處理 (microwave plasma treatment) 29 3.3.4 電化學測量 (electrochemical measurement) 32 3.3.4.1. 電催化劑漿料與工作電極製備 33 3.3.4.2. 循環伏安法 (cyclic voltammetry, CV) 33 3.3.4.3. 線性掃描伏安法 (linear sweep voltammetry, LSV) 33 3.3.4.4. 電子轉移數 (the number of electron transfer, n) 34 3.3.4.5. 雙氧水選擇性 (H2O2 selectivity) 35 3.3.4.6. 電化學活性面積 (electrochemical active surface area, ECSA) 36 3.4 分析儀器 37 3.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 37 3.4.2 X光繞射儀 (XRD) 39 3.4.3 拉曼光譜儀 (Raman) 41 3.4.4 化學分析電子能譜儀 (ESCA) 43 第四章 結果與討論 45 4.1 微波電漿工作氣體組成對含鐵離子之PVP纖維處理之影響 45 4.1.1 電漿氣體組成對PVP/Fe fibers表面形貌之影響 45 4.1.2 電漿氣體組成對PVP/Fe fibers結晶性質之影響 47 4.1.3 兩階段微波電漿處理對PVP/Fe fibers表面形貌與結晶性質之影響 47 4.2 利用氬氣微波電漿製備Fe3C/Fe@C複合材料 50 4.2.1 電漿處理時間對PVP/Fe fibers表面形貌與化學組成之影響 50 4.2.2 電漿處理時間對PVP/Fe fibers結晶性質之影響 51 4.2.3 電漿處理時間對PVP/Fe fibers碳缺陷之影響 52 4.3 電催化之氧氣還原反應 (Oxygen Reduction Reaction, ORR) 53 4.3.1 氬氣微波電漿處理時間對PVP/Fe fibers氧氣還原之表現 53 4.3.2 氬氣微波電漿處理距離對PVP/Fe fibers氧氣還原之表現 54 4.3.3 PAN/Fe fibers中鐵離子濃度對於氧氣還原之表現 57 4.3.4 酸洗與二次電漿處理對PAN/Fe(0.4M)-0cm-Ar12於氧氣還原之表現 59 4.4 電催化之氧氣析出反應 (Oxygen Evolution Reaction, OER) 62 4.4.1. PVP/Fe(0.2M)-0cm-Ar12與PAN/Fe(0.4M)-0cm-Ar12氧氣析出之影響 62 4.4.2. 合併氧氣還原反應與氧氣析出反應之結果 (PVP/Fe(0.2M)-0cm-Ar12、PAN/Fe(0.4M)-0cm-Ar12) 63 4.5 PVP/Fe(0.2M)-0cm-Ar12和PAN/Fe(0.4M)-0cm-Ar12之表面化學分析 (ESCA) 64 4.5.1. PVP/Fe(0.2M)-0cm-Ar12和PAN/Fe(0.4M)-0cm-Ar12之ESCA全譜圖 (ESCA survey) 64 4.5.2. PVP/Fe(0.2M)-0cm-Ar12和PAN/Fe(0.4M)-0cm-Ar12之ESCA分峰圖 (ESCA high-resolution) 65 第五章 結論 108 第六章 參考文獻 110 Appendix 120

1. Baky, M. A. H.; Rahman, M. M.; Islam, A. S., Development of renewable energy sector in Bangladesh: Current status and future potentials. Renewable and Sustainable Energy Reviews 2017, 73, 1184-1197.
2. Rahman, M. M.; Oni, A. O.; Gemechu, E.; Kumar, A., Assessment of energy storage technologies: A review. Energy Conversion and Management 2020, 223, 113295.
3. Perera, F., Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. International journal of environmental research and public health 2018, 15 (1), 16.
4. Ouikhalfan, M.; Lakbita, O.; Delhali, A.; Assen, A. H.; Belmabkhout, Y., Toward net-zero emission fertilizers industry: greenhouse gas emission analyses and decarbonization solutions. Energy & Fuels 2022, 36 (8), 4198-4223.
5. Nordahl, S. L.; Devkota, J. P.; Amirebrahimi, J.; Smith, S. J.; Breunig, H. M.; Preble, C. V.; Satchwell, A. J.; Jin, L.; Brown, N. J.; Kirchstetter, T. W., Life-cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies. Environmental science & technology 2020, 54 (15), 9200-9209.
6. Shen, M.; Huang, W.; Chen, M.; Song, B.; Zeng, G.; Zhang, Y., (Micro) plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production 2020, 254, 120138.
7. Lehtola, T.; Zahedi, A., Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments 2019, 35, 25-31.
8. Xia, W.; Mahmood, A.; Liang, Z.; Zou, R.; Guo, S., Earth‐abundant nanomaterials for oxygen reduction. Angewandte Chemie International Edition 2016, 55 (8), 2650-2676.
9. Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J.; Arenz, M., The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. Journal of the American Chemical Society 2011, 133 (43), 17428-17433.
10. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang, W.; Zhu, Z.; Smith, S. C.; Jaroniec, M., Nanoporous graphitic-C3N4@ carbon metal-free electrocatalysts for highly efficient oxygen reduction. Journal of the American Chemical Society 2011, 133 (50), 20116-20119.
11. Su, H.-Y.; Gorlin, Y.; Man, I. C.; Calle-Vallejo, F.; Nørskov, J. K.; Jaramillo, T. F.; Rossmeisl, J., Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Physical Chemistry Chemical Physics 2012, 14 (40), 14010-14022.
12. Kimmel, Y. C.; Xu, X.; Yu, W.; Yang, X.; Chen, J. G., Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catalysis 2014, 4 (5), 1558-1562.
13. Carver, C. T.; Matson, B. D.; Mayer, J. M., Electrocatalytic oxygen reduction by iron tetra-arylporphyrins bearing pendant proton relays. Journal of the American Chemical Society 2012, 134 (12), 5444-5447.
14. Samanta, S.; Sengupta, K.; Mittra, K.; Bandyopadhyay, S.; Dey, A., Selective four electron reduction of O2 by an iron porphyrin electrocatalyst under fast and slow electron fluxes. Chemical communications 2012, 48 (61), 7631-7633.
15. Zhao, Y.; Watanabe, K.; Hashimoto, K., Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. Journal of the American Chemical Society 2012, 134 (48), 19528-19531.
16. Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B., High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Scientific reports 2013, 3 (1), 1765.
17. Chung, H. T.; Won, J. H.; Zelenay, P., Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature communications 2013, 4 (1), 1922.
18. Peng, H.; Liu, F.; Liu, X.; Liao, S.; You, C.; Tian, X.; Nan, H.; Luo, F.; Song, H.; Fu, Z., Effect of transition metals on the structure and performance of the doped carbon catalysts derived from polyaniline and melamine for ORR application. Acs Catalysis 2014, 4 (10), 3797-3805.
19. Lv, M.; Guo, H.; Shen, H.; Wang, J.; Wang, J.; Shimakawa, Y.; Yang, M., Fe3C cluster-promoted single-atom Fe, N doped carbon for oxygen-reduction reaction. Physical Chemistry Chemical Physics 2020, 22 (14), 7218-7223.
20. Tan, H.; Li, Y.; Kim, J.; Takei, T.; Wang, Z.; Xu, X.; Wang, J.; Bando, Y.; Kang, Y. M.; Tang, J., Sub‐50 nm Iron–Nitrogen‐Doped Hollow Carbon Sphere‐Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science 2018, 5 (7), 1800120.
21. Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S., Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. Journal of the American Chemical Society 2015, 137 (4), 1436-1439.
22. Jiang, H.; Yao, Y.; Zhu, Y.; Liu, Y.; Su, Y.; Yang, X.; Li, C., Iron carbide nanoparticles encapsulated in mesoporous Fe–N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Applied Materials & Interfaces 2015, 7 (38), 21511-21520.
23. Su, S.; Huang, L.; Su, S.; Meng, C.; Zhou, H.; Zhang, L.; Bian, T.; Yuan, A., Fe/Fe3C-NC nanosheet/carbon nanotube composite electrocatalysts for oxygen reduction reaction. ACS Applied Nano Materials 2020, 3 (11), 11574-11580.
24. Li, Y.-W.; Zhang, W.-J.; Li, J.; Ma, H.-Y.; Du, H.-M.; Li, D.-C.; Wang, S.-N.; Zhao, J.-S.; Dou, J.-M.; Xu, L., Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Applied Materials & Interfaces 2020, 12 (40), 44710-44719.
25. Ma, Y.; Sumboja, A.; Zang, W.; Yin, S.; Wang, S.; Pennycook, S. J.; Kou, Z.; Liu, Z.; Li, X.; Wang, J., Flexible and wearable all-solid-state Al–air battery based on iron carbide encapsulated in electrospun porous carbon nanofibers. ACS applied materials & interfaces 2018, 11 (2), 1988-1995.
26. Mooste, M.; Kibena‐Põldsepp, E.; Vassiljeva, V.; Kikas, A.; Käärik, M.; Kozlova, J.; Kisand, V.; Külaviir, M.; Cavaliere, S.; Leis, J., Electrospun polyacrylonitrile‐derived Co or Fe containing nanofibre catalysts for oxygen reduction reaction at the alkaline membrane fuel cell cathode. ChemCatChem 2020, 12 (18), 4568-4581.
27. Chen, X.; Xu, J.; Chai, H.; Wang, Y.; Jia, D.; Zhou, W., One-step synthesis of hollow chain-like nitrogen doped carbon nanotubes/iron carbide as highly efficient bifunctional oxygen electrocatalyst. Journal of Electroanalytical Chemistry 2019, 838, 16-22.
28. Sun, D.; Turner, J.; Jiang, N.; Zhu, S.; Zhang, L.; Falzon, B. G.; McCoy, C. P.; Maguire, P.; Mariotti, D.; Sun, D., Atmospheric pressure microplasma for antibacterial silver nanoparticle/chitosan nanocomposites with tailored properties. Composites Science and Technology 2020, 186, 107911.
29. Lin, L.; Li, X.; Gao, H.; Xu, H.; Starostin, S. A.; Ostrikov, K. K.; Hessel, V., Microfluidic Plasma-Based Continuous and Tunable Synthesis of Ag–Au Nanoparticles and Their SERS Properties. Industrial & Engineering Chemistry Research 2021, 61 (5), 2183-2194.
30. Liu, H.; Ikeda, K.; Nguyen, M. T.; Sato, S.; Matsuda, N.; Tsukamoto, H.; Tokunaga, T.; Yonezawa, T., Alginate-Stabilized Gold Nanoparticles Prepared Using the Microwave-Induced Plasma-in-Liquid Process with Long-Term Storage Stability for Potential Biomedical Applications. ACS omega 2022, 7 (7), 6238-6247.
31. Weber, M.; Julbe, A.; Ayral, A.; Miele, P.; Bechelany, M., Atomic layer deposition for membranes: basics, challenges, and opportunities. Chemistry of Materials 2018, 30 (21), 7368-7390.
32. Wang, J.; Chen, X.; Reis, R.; Chen, Z.; Milne, N.; Winther-Jensen, B.; Kong, L.; Dumée, L. F., Plasma modification and synthesis of membrane materials—a mechanistic review. Membranes 2018, 8 (3), 56.
33. Khatib, S. J.; Oyama, S. T., Silica membranes for hydrogen separation prepared by chemical vapor deposition (CVD). Separation and Purification Technology 2013, 111, 20-42.
34. Khan, S. R.; Sharma, B.; Chawla, P. A.; Bhatia, R., Inductively coupled plasma optical emission spectrometry (ICP-OES): a powerful analytical technique for elemental analysis. Food Analytical Methods 2022, 1-23.
35. Zhang, X.-W.; Liu, M.-X.; He, M.-Q.; Chen, S.; Yu, Y.-L.; Wang, J.-H., Integral multielement signals by DNA-programmed UCNP–AuNP nanosatellite assemblies for ultrasensitive ICP–MS detection of exosomal proteins and cancer identification. Analytical Chemistry 2021, 93 (16), 6437-6445.
36. Mirpour, S.; Fathollah, S.; Mansouri, P.; Larijani, B.; Ghoranneviss, M.; Mohajeri Tehrani, M.; Amini, M. R., Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Scientific Reports 2020, 10 (1), 1-9.
37. Meng, H.; Pei, S.; Li, H.; Zhang, Y., CoFe/N, S–C Featured with Graphitic Nanoribbons and Multiple CoFe Nanoparticles as Highly Stable and Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS omega 2021, 6 (16), 11059-11067.
38. Kim, J. H.; Sa, Y. J.; Jeong, H. Y.; Joo, S. H., Roles of Fe−Nx and Fe−Fe3C@C species in Fe−N/C electrocatalysts for oxygen reduction reaction. ACS Applied Materials & Interfaces 2017, 9 (11), 9567-9575.
39. Song, A.; Cao, L.; Yang, W.; Li, Y.; Qin, X.; Shao, G., Uniform multilayer graphene-coated iron and iron-carbide as oxygen reduction catalyst. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 4890-4898.
40. Li, C.; He, C.; Sun, F.; Wang, M.; Wang, J.; Lin, Y., Incorporation of Fe3C and pyridinic N active sites with a moderate N/C Ratio in Fe–N mesoporous carbon materials for enhanced oxygen reduction reaction activity. ACS Applied Nano Materials 2018, 1 (4), 1801-1810.
41. Lin, L.; Zhu, Q.; Xu, A.-W., Noble-metal-free Fe–N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. Journal of the American Chemical Society 2014, 136 (31), 11027-11033.
42. Xue, J.; Wu, T.; Dai, Y.; Xia, Y., Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews 2019, 119 (8), 5298-5415.
43. Lou, L.; Osemwegie, O.; Ramkumar, S. S., Functional nanofibers and their applications. Industrial & Engineering Chemistry Research 2020, 59 (13), 5439-5455.
44. Dos Santos, D. M.; Correa, D. S.; Medeiros, E. S.; Oliveira, J. E.; Mattoso, L. H., Advances in functional polymer nanofibers: From spinning fabrication techniques to recent biomedical applications. ACS applied materials & interfaces 2020, 12 (41), 45673-45701.
45. Zhang, Y.; Kong, D.; Bo, L.; Shi, W.; Guan, X.; Wang, Y.; Lei, Z.; Tong, J., Electrospinning preparation of N, P dual-doped molybdenum carbide/porous carbon fibers with highly improved electrocatalytic activity for hydrogen evolution reaction. ACS Applied Energy Materials 2021, 4 (11), 13051-13060.
46. Yu, G.; Guo, H.; Liu, S.; Chen, L.; Alshehri, A. A.; Alzahrani, K. A.; Hao, F.; Li, T., Cr3C2 nanoparticle-embedded carbon nanofiber for artificial synthesis of NH3 through N2 fixation under ambient conditions. ACS applied materials & interfaces 2019, 11 (39), 35764-35769.
47. Zhao, Y.; Lai, Q.; Wang, Y.; Zhu, J.; Liang, Y., Interconnected hierarchically porous Fe, N-codoped carbon nanofibers as efficient oxygen reduction catalysts for Zn–air batteries. ACS Applied Materials & Interfaces 2017, 9 (19), 16178-16186.
48. Jeong, B.; Shin, D.; Choun, M.; Maurya, S.; Baik, J.; Mun, B. S.; Moon, S.-H.; Su, D.; Lee, J., Nitrogen-deficient ORR active sites formation by iron-assisted water vapor activation of electrospun carbon nanofibers. The Journal of Physical Chemistry C 2016, 120 (14), 7705-7714.
49. Buonomenna, M.; Lopez, L.; Davoli, M.; Favia, P.; d’Agostino, R.; Drioli, E., Polymeric membranes modified via plasma for nanofiltration of aqueous solution containing organic compounds. Microporous and Mesoporous Materials 2009, 120 (1-2), 147-153.
50. Reis, R.; Dumée, L. F.; Tardy, B. L.; Dagastine, R.; Orbell, J. D.; Schutz, J. A.; Duke, M. C., Towards enhanced performance thin-film composite membranes via surface plasma modification. Scientific reports 2016, 6 (1), 1-13.
51. Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A., Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surface and Coatings Technology 2013, 233, 99-107.
52. Dufay, M.; Jimenez, M.; Degoutin, S., Effect of cold plasma treatment on electrospun nanofibers properties: A review. ACS Applied Bio Materials 2020, 3 (8), 4696-4716.
53. Mukai, Y.; Liu, S.; Takayama, Y.; Hayashi, Y.; Mano, K.; Takahashi, S.; Wahyudiono; Kanda, H.; Goto, M., Improvement in the filtration performance of an ultraporous nanofiber membrane by atmospheric pressure plasma-induced surface modification. ACS omega 2021, 6 (42), 28038-28048.
54. Du, H.; Yang, W.; Yi, W.; Sun, Y.; Yu, N.; Wang, J., Oxygen-plasma-assisted enhanced acetone-sensing properties of ZnO nanofibers by electrospinning. ACS applied materials & interfaces 2020, 12 (20), 23084-23093.
55. Jin, Q.; Ren, B.; Chen, J.; Cui, H.; Wang, C., A facile method to conduct 3D self-supporting Co-FeCo/N-doped graphene-like carbon bifunctional electrocatalysts for flexible solid-state zinc air battery. Applied Catalysis B: Environmental 2019, 256, 117887.
56. Asadian, M.; Onyshchenko, I.; Thukkaram, M.; Tabaei, P. S. E.; Van Guyse, J.; Cools, P.; Declercq, H.; Hoogenboom, R.; Morent, R.; De Geyter, N., Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate polymers 2018, 201, 402-415.
57. Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A. G., Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science 2018, 77, 69-94.
58. Qu, H.; Fu, H.; Han, Z.; Sun, Y., Biomaterials for bone tissue engineering scaffolds: A review. RSC advances 2019, 9 (45), 26252-26262.
59. Shokrani, H.; Shokrani, A.; Jouyandeh, M.; Seidi, F.; Gholami, F.; Kar, S.; Munir, M. T.; Kowalkowska-Zedler, D.; Zarrintaj, P.; Rabiee, N., Green polymer nanocomposites for skin tissue engineering. ACS Applied Bio Materials 2022, 5 (5), 2107-2121.
60. Xu, G.-R.; Xing, Y.-L.; Wang, M.; An, Z.-H.; Zhao, H.-L.; Xu, K.; Qi, C.-H.; Yang, C.; Ramakrishna, S.; Liu, Q., Electrospun nanofibrous membranes as promising materials for developing high-performance desalination technologies. Desalination 2022, 528, 115639.
61. Hu, Y.; Qi, H.; Yang, L.; Sheng, Y.; Xie, Y.; Ma, Q.; Shao, H.; Yu, W.; Li, D.; Dong, X., Flexible electrospun fluorescent anisotropic conductive Janus-typed nanoribbon membrane. European Polymer Journal 2022, 173, 111265.
62. Li, J.; Zhang, Q.; Peng, S.; Zhang, D.; Yan, X.; Wu, X.; Gong, X.; Wang, Q.; He, G., Electrospinning fiberization of carbon nanotube hybrid sulfonated poly (ether ether ketone) ion conductive membranes for a vanadium redox flow battery. Journal of Membrane Science 2019, 583, 93-102.
63. Dong, T.; Arifeen, W. U.; Choi, J.; Yoo, K.; Ko, T., Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chemical Engineering Journal 2020, 398, 125646.
64. Huang, H. Y.; Skripka, A.; Zaroubi, L.; Findlay, B. L.; Vetrone, F.; Skinner, C.; Oh, J. K.; Cuccia, L. A., Electrospun upconverting nanofibrous hybrids with smart NIR-light-controlled drug release for wound dressing. ACS Applied Bio Materials 2020, 3 (10), 7219-7227.
65. Liu, Y.; Chen, X.; Yu, D.-G.; Liu, H.; Liu, Y.; Liu, P., Electrospun PVP-core/PHBV-shell fibers to eliminate tailing off for an improved sustained release of curcumin. Molecular Pharmaceutics 2021, 18 (11), 4170-4178.
66. Kumar, S.; Jang, J.; Oh, H.; Jung, B. J.; Lee, Y.; Park, H.; Yang, K. H.; Chang Seong, Y.; Lee, J.-S., Antibacterial polymeric nanofibers from zwitterionic terpolymers by electrospinning for air filtration. ACS Applied Nano Materials 2020, 4 (3), 2375-2385.
67. Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C., Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS applied materials & interfaces 2019, 11 (13), 12880-12889.
68. Neyts, E. C.; Ostrikov, K.; Sunkara, M. K.; Bogaerts, A., Plasma catalysis: synergistic effects at the nanoscale. Chemical reviews 2015, 115 (24), 13408-13446.
69. Lebedev, Y. A., Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma. Plasma Sources Science and Technology 2015, 24 (5), 053001.
70. Tiwari, S.; Caiola, A.; Bai, X.; Lalsare, A.; Hu, J., Microwave plasma-enhanced and microwave heated chemical reactions. Plasma Chemistry and Plasma Processing 2020, 40, 1-23.
71. Chen, G.; Georgieva, V.; Godfroid, T.; Snyders, R.; Delplancke-Ogletree, M.-P., Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental 2016, 190, 115-124.
72. Spencer, L.; Gallimore, A., CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency. Plasma Sources Science and Technology 2012, 22 (1), 015019.
73. Hong, J.; Prawer, S.; Murphy, A. B., Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress. ACS Sustainable Chemistry & Engineering 2018, 6 (1), 15-31.
74. Bai, X.; Tiwari, S.; Robinson, B.; Killmer, C.; Li, L.; Hu, J., Microwave catalytic synthesis of ammonia from methane and nitrogen. Catalysis Science & Technology 2018, 8 (24), 6302-6305.
75. Muguruma, H.; Hoshino, T.; Matsui, Y., Enzyme biosensor based on plasma-polymerized film-covered carbon nanotube layer grown directly on a flat substrate. ACS Applied Materials & Interfaces 2011, 3 (7), 2445-2450.
76. Du, Z.; Wang, S.; Kong, C.; Deng, Q.; Wang, G.; Liang, C.; Tang, H., Microwave plasma synthesized nitrogen-doped carbon nanotubes for oxygen reduction. Journal of Solid State Electrochemistry 2015, 19, 1541-1549.
77. Varga, M. n.; Potocký, S. t. n.; Domonkos, M. r.; Ižák, T.; Babčenko, O.; Kromka, A., Great variety of man-made porous diamond structures: Pulsed microwave cold plasma system with a linear antenna arrangement. ACS omega 2019, 4 (5), 8441-8450.
78. Das, D.; Roy, A., Growth of Nanostructured Diamond Films on Glass Substrates by Low-Temperature Microwave Plasma-Enhanced Chemical Vapor Deposition for Applications in Nanotribology. ACS Applied Nano Materials 2022, 5 (3), 3558-3571.
79. Wen, Z.; Ci, S.; Zhang, F.; Feng, X.; Cui, S.; Mao, S.; Luo, S.; He, Z.; Chen, J., Nitrogen‐enriched core‐shell structured Fe/Fe3C‐C nanorods as advanced electrocatalysts for oxygen reduction reaction. Advanced Materials 2012, 24 (11), 1399-1404.
80. Ding, Y.; Zhou, W.; Gao, J.; Sun, F.; Zhao, G., H2O2 Electrogeneration from O2 Electroreduction by N‐Doped Carbon Materials: A Mini‐Review on Preparation Methods, Selectivity of N Sites, and Prospects. Advanced Materials Interfaces 2021, 8 (10), 2002091.
81. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K., Understanding catalytic activity trends in the oxygen reduction reaction. Chemical Reviews 2018, 118 (5), 2302-2312.
82. Zhu, Z.; Liu, Q.; Liu, X.; Shui, J., Temperature impacts on oxygen reduction reaction measured by the rotating disk electrode technique. The Journal of Physical Chemistry C 2020, 124 (5), 3069-3079.
83. Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M., Scanning electron microscopy: Principle and applications in nanomaterials characterization. Handbook of materials characterization 2018, 113-145.
84. Abd Mutalib, M.; Rahman, M.; Othman, M.; Ismail, A.; Jaafar, J., Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. In Membrane characterization, Elsevier: 2017; pp 161-179.
85. Hodoroaba, V.-D., Energy-dispersive X-ray spectroscopy (EDS). In Characterization of Nanoparticles, Elsevier: 2020; pp 397-417.
86. Epp, J., X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods, Elsevier: 2016; pp 81-124.
87. Baghban, A.; Ezedin Nejadian, H.; Habibzadeh, S.; Zokaee Ashtiani, F., Hydrogenation of pyrolysis gasoline by novel Ni-doped MOF derived catalysts from ZIF-8 and ZIF-67. Scientific Reports 2022, 12 (1), 19428.
88. Lee, K. S.; Landry, Z.; Pereira, F. C.; Wagner, M.; Berry, D.; Huang, W. E.; Taylor, G. T.; Kneipp, J.; Popp, J.; Zhang, M., Raman microspectroscopy for microbiology. Nature Reviews Methods Primers 2021, 1 (1), 80.
89. Han, X. X.; Rodriguez, R. S.; Haynes, C. L.; Ozaki, Y.; Zhao, B., Surface-enhanced Raman spectroscopy. Nature Reviews Methods Primers 2021, 1 (1), 87.
90. Mosca, S.; Conti, C.; Stone, N.; Matousek, P., Spatially offset Raman spectroscopy. Nature Reviews Methods Primers 2021, 1 (1), 21.
91. Butler, H. J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.; Fullwood, N. J.; Gardner, B.; Martin-Hirsch, P. L., Using Raman spectroscopy to characterize biological materials. Nature protocols 2016, 11 (4), 664-687.
92. Stoerzinger, K. A.; Hong, W. T.; Crumlin, E. J.; Bluhm, H.; Shao-Horn, Y., Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Accounts of Chemical Research 2015, 48 (11), 2976-2983.
93. Krishna, D. N. G.; Philip, J., Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Applied Surface Science Advances 2022, 12, 100332.
94. Stevie, F. A.; Donley, C. L., Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (6), 063204.
95. Wang, Y.; Wang, L.; Xie, Y.; Tong, M.; Tian, C.; Fu, H., The Fe3C–Nx Site Assists the Fe–Nx Site to Promote Activity of the Fe–N–C Electrocatalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry & Engineering 2022, 10 (10), 3346-3354.
96. Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Zuo, J.; Qiu, F.; Yu, J.; Song, H.; Ye, Z.; Zhang, S., Ultrahigh-Loaded Fe Single Atoms and Fe3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces 2023.
97. Jiang, W.-J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.-J.; Wang, J.-Q.; Hu, J.-S.; Wei, Z.; Wan, L.-J., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–N x. Journal of the American Chemical Society 2016, 138 (10), 3570-3578.
98. Ji, D.; Peng, S.; Safanama, D.; Yu, H.; Li, L.; Yang, G.; Qin, X.; Srinivasan, M.; Adams, S.; Ramakrishna, S., Design of 3-dimensional hierarchical architectures of carbon and highly active transition metals (Fe, Co, Ni) as bifunctional oxygen catalysts for hybrid lithium–air batteries. Chemistry of Materials 2017, 29 (4), 1665-1675.
99. Xia, H.; Zhang, S.; Zhu, X.; Xing, H.; Xue, Y.; Huang, B.; Sun, M.; Li, J.; Wang, E., Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers. Journal of Materials Chemistry A 2020, 8 (35), 18125-18131.
100. García, Á.; Haynes, T.; Retuerto, M.; Ferrer, P.; Pascual, L.; Peña, M. A.; Abdel Salam, M.; Mokhtar, M.; Gianolio, D.; Rojas, S., Effect of the thermal treatment of Fe/N/C catalysts for the oxygen reduction reaction synthesized by pyrolysis of covalent organic frameworks. Industrial & Engineering Chemistry Research 2021, 60 (51), 18759-18769.
101. Zhong, R.; Wu, Y.; Liang, Z.; Guo, W.; Zhi, C.; Qu, C.; Gao, S.; Zhu, B.; Zhang, H.; Zou, R., Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon 2019, 142, 115-122.
102. Ruan, M.; Liu, J.; Song, P.; Xu, W., Meta-analysis of commercial Pt/C measurements for oxygen reduction reactions via data mining. Chinese Journal of Catalysis 2022, 43 (1), 116-121.
103. Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Zuo, J.; Qiu, F.; Yu, J.; Song, H.; Ye, Z.; Zhang, S., Ultrahigh-Loaded Fe Single Atoms and Fe3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces 2023, 15 (4), 5720-5731.
104. Liu, Z.; Zhu, Y.; Xiao, K.; Xu, Y.; Peng, Y.; Liu, J.; Chen, X., Fe/Fe3C Embedded in N-Doped Worm-like Porous Carbon for High-Rate Catalysis in Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces 2021, 13 (21), 24710-24722.
105. Lakshmanan, A.; Gavali, D. S.; Venkataprasanna, K.; Thapa, R.; Sarkar, D., Low-basis weight polyacrylonitrile/polyvinylpyrrolidone blend nanofiber membranes for efficient particulate matter capture. ACS Applied Polymer Materials 2022, 4 (5), 3971-3981.
106. Huang, H.; Meng, X.-G.; Yu, W.-W.; Chen, L.-Y.; Wu, Y.-Y., High selective isomerization of glucose to fructose catalyzed by amidoximed polyacrylonitrile. ACS omega 2021, 6 (30), 19860-19866.
107. Jiang, R.; Li, L.; Sheng, T.; Hu, G.; Chen, Y.; Wang, L., Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities. Journal of the American Chemical Society 2018, 140 (37), 11594-11598.
108. Altmannshofer, S.; Eisele, I.; Gschwandtner, A., Hydrogen microwave plasma treatment of Si and SiO2. Surface and Coatings Technology 2016, 304, 359-363.

無法下載圖示 全文公開日期 2033/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE