簡易檢索 / 詳目顯示

研究生: 黃俊銘
Jun-Ming Huang
論文名稱: 基於輸出電流-電壓曲線的光伏發電系統智慧型故障診斷技術
Intelligent Fault Diagnostic Methods for Photovoltaic Generation System Based on IV-Curve Measurement
指導教授: 魏榮宗
Rong-Jong Wai
口試委員: 呂政修
Jenq-Shiou Leu
魏榮宗
Rong-Jong Wai
劉一宇
Yi-Yu Liu
陳文瑞
Ray Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 115
中文關鍵詞: 光伏系統電流-電壓曲線故障診斷信賴域仿射粒子群優化灰塵影響人工蜂群演算法半監督極限學習機
外文關鍵詞: PV system, I-V curve, Fault diagnosis, Trust-Region-Reflective (TRR), Particle swarm optimization (PSO), Dust impact, Artificial bee colony algorithm (ABC), Semi-supervised extreme learning machine (SSELM)
相關次數: 點閱:651下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

光伏系統故障診斷是提高光伏系統可靠性和安全性的基本任務。由於光伏系统輸出存在高度非線性特性,且容易受到外界環境因素的影響,光伏系統直流側故障難以被傳統保護裝置檢測。光伏系統故障發生不僅會損害光伏模組,致使光伏系統發電量降低,嚴重時甚至會導致安全問題和火災隱患。本論文通過模擬建模分析在標準測試條件下的光伏系統故障電流-電壓曲線,進而選取有效的故障診斷特徵參數。為了排除光照與溫度的影響,本論文提出了一種提出了基於混合粒子群優化和信賴域仿射最優化演算法的非線性最小二乘法進行參數標準化,將光伏系統的輸出特徵參數轉化到標準測試條件下,進而歸一化後得到光伏故障的識別特徵量。再者,採用多類指數損失函數的逐步添加模型,以回歸分類決策樹作為基礎分類器的集成學習分類演算法,作為光伏故障的診斷演算法,並通過定期利用光伏系統正常運行的資料更新參數標準化方程,使故障診斷演算法能適應於光伏系統的自然老化,保持故障分類演算法的長期有效性。本論文所提診斷演算法的特徵量所具備的泛化能力,能適應於不同的光伏模組,即使在故障樣本不足時,亦能採用其它案場的故障樣本建立故障診斷模型。更進一步,本論文針對光伏模組運行於外界環境最容易存在之灰塵因素,分析了積灰下光伏系統電流-電壓曲線的輸出特徵,並針對舊有光伏系統無法滿足監督學習大量標籤資料的要求,提出了一種利用人工蜂群演算法優化半監督極限學習機的機器學習演算法,結合光伏串列輸出電流-電壓曲線的特徵參數標準化方法,所提診斷演算法能利用少量模擬標籤資料與大量光伏案場歷史無標籤資料進行故障診斷,利用低成本資料進而降低了人力和時間成本,此外,對於積灰狀態的監控能預警系統廠商進行有效清洗,增加光伏系統發電收益。本論文數值模擬和實驗測試採用3.51kWp多晶矽太陽能板和3.9kWp單晶太陽能板的光伏串列驗證所提故障診斷演算法的泛化能力、精確度和可靠性。


Fault diagnosis of a photovoltaic (PV) system is an essential task for improving its reliability and safety. PV faults at the dc side are difficult to detect by traditional protective devices, which may reduce power conversion efficiency and even lead to safety matters and fire disaster. This thesis investigates intelligent fault diagnostic methods for a PV system. First, optimal faulty features are extracted by analyzing I-V curves from different faults including hybrid faults of a PV system under the standard test condition (STC). Moreover, the trust-region-reflective (TRR) deterministic algorithm combined with the particle-swarm-optimization (PSO) metaheuristic algorithm is proposed to standardize faulty features into the ones under the STC. In addition, a multi-class adaptive boosting (AdaBoost) algorithm, which is the stage-wise additive modeling using multi-class exponential (SAMME) loss function based on the classification and regression tree (CART) as the weak classifier, is utilized to establish the fault diagnostic model. The effectiveness of the fault diagnostic model could long-term maintain by periodically updating the feature standardization equations to standardize the fault features into the ones under the STC. On the other hand, PV systems operating in the outdoor environment are vulnerable to various factors, especially dust impact. I-V characteristics of PV strings under soiling condition are also analyzed in this thesis. Because labeled data for PV systems with specific faults are challenging to record, especially in the large-scale ones, a novel algorithm combining artificial bee colony algorithm and semi-supervised extreme learning machine (ABC-SSELM) is proposed to handle this problem. Combining with the parameter normalization method, the proposed ABC-SSELM algorithm can diagnose PV faults using a small amount of simulated labeled data and historical unlabeled data, which greatly reduces labor cost and time-consuming. Furthermore, the monitoring of dust accumulation can warn power plant owners to clean PV modules in time and increase the power generation benefits. PV systems of 3.51 kWp and 3.9 kWp are used to verify the proposed diagnostic methods. Both numerical simulations and experimental results show the accuracy and reliability of the proposed PV diagnostic technologies.

中文摘要 I Abstract III 誌謝 V Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 Chapter 2 PV Fault Analyses and Feature Normalization 9 2.1 Overview 9 2.2 PV modeling via Matlab/Simulink 10 2.3 PV fault analyses under STC 11 2.4 Parameter normalization based on nonlinear least square 18 2.4.1 Traditional approximation equation 18 2.4.2 Curve-fitting characteristic formula 20 2.4.3 Trust-region-reflective algorithm 21 2.4.4 Practical swarm optimization 25 2.4.5 Parameter normalization 26 Chapter 3 PV Fault Pattern-Recognition Theories 28 3.1 Overview 28 3.2 PV fault classified method based on SAMME-CART 29 3.2.1 CART algorithm 29 3.2.2 SAMME-CART algorithm 30 3.2.3 SAMME parameter optimization 31 3.2.4 PV diagnostic model establishment based on SAMME-CART 32 3.3 PV fault classified method based on ABC-SSELM 34 3.3.1 Semi-supervised extreme learning machine 34 3.3.2 Hybrid artificial bee colony algorithm and semi-supervised extreme learning machine 37 Chapter 4 Numerical Simulations and Experimental Results 41 4.1 SAMME-CART based PV fault diagnostic method 41 4.1.1 Numerical simulations of PV diagnoses 41 4.1.2 Experimental verification of PV diagnoses 49 4.2 ABC-SSELM based PV fault diagnostic method 55 4.2.1 Data acquisition 55 4.2.2 Parameters normalization 58 4.2.3 Performance verification of proposed ABC-SSELM 60 4.2.4 Comparison with other machine learning methods 64 4.2.5 Recognition of complex hybrid faults 67 Chapter 5 Discussions and Suggestions for Future Research 69 5.1 Discussions 69 5.2 Suggestions for future research 73 References 77 Biographical Sketch 86 Appendix 88

[1] Y. Zhao, J. de Palma, J. Mosesian, R. Lyons, and B. Lehman, “Line-line fault analysis and protection challenges in solar photovoltaic arrays”, IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3784-3795, Sep. 2013.
[2] M. K. Alam, F. Khan, J. Johnson, and J. Flicker, “A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques”, IEEE J. Photovolt., vol. 5, no. 3, pp. 982-997, May 2015.
[3] D. S. Pillai and N. Rajasekar, “A compatibility analysis on NEC, IEC, and UL standards for protection against line–line and line–ground faults in PV Arrays”, IEEE J. Photovolt., vol. 9 no. 3, pp. 864–871, May 2019.
[4] D. S. Pillai, and N. Rajasekar, “A comprehensive review on protection challenges and fault diagnosis in PV systems”, Renew. Sust. Energy Rev., vol. 91, pp. 18-40, Aug. 2018.
[5] D. S. Pillai, F. Blaabjerg, and N. Rajasekar, “A comparative evaluation of advanced fault detection approaches for PV systems”, IEEE J. Photovolt., vol. 9, no. 2, pp. 513–527, Mar. 2019.
[6] M. Simon and E. L. Meyer, “Detection and analysis of hot-spot formation in solar cells”, Solar Energy Mater. Solar Cells, vol. 94, no. 2, pp. 106-113, Feb. 2010.
[7] Y. Hu, W. Cao, J. Ma, S. J. Finney, and D. Li, “Identifying PV module mismatch faults by a thermography-based temperature distribution analysis”, IEEE Trans. Device Mater. Rel., vol. 14, no. 4, pp. 951-960, Dec. 2014.
[8] D. M. Tsai, S. C. Wu, and W. Y. Chiu, “Defect detection in solar modules using ICA basis images”, IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 122-131, Feb. 2013.
[9] S. Roy, M. K. Alam, F. Khan, J. Johnson, and J. Flicker, “An irradiance independent, robust ground-fault detection scheme for PV Arrays based on spread spectrum time-domain reflectometry (SSTDR)”, IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7046-7057, Aug. 2018.
[10] T. Takashima, J. Yamaguchi, K. Otani, T. Oozeki, K. Kato, and M. Ishida, “Experimental studies of fault location in PV module strings”, Sol. Energy Mater. Sol. Cells, vol. 93, no. 6, pp. 1079-1082, Jun. 2009.
[11] A. Chouder and S. Silvestre, “Automatic supervision and fault detection of PV systems based on power losses analysis”, Energy Conver. Manage., vol. 51, pp. 1929-1937, Oct. 2010.
[12] R. Hariharan, M. Chakkarapani, G. Saravana Ilango, and C. Nagamani, “A method to detect photovoltaic array faults and partial shading in PV systems”, IEEE J. Photovolt., vol. 6, no. 5, pp. 1278–1285, Sep. 2016.
[13] C. L. Kuo, J. L. Chen, S. J. Chen, C. C. Kao, H. T. Yau, and C. H. Lin, “Photovoltaic energy conversion system fault detection using fractional-order color relation classifier in micro-distribution systems”, IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1163–1172, May 2017.
[14] M. Dhimish, V. Holmes, B. Mehrdadi, M. Dales, and P. Mather, “Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system”, Energy, vol. 140, pp. 276-290, Dec. 2017.
[15] F. Harrou, B. Taghezouit, and Y. Sun, “Improved kNN-based monitoring schemes for detecting faults in PV systems”, IEEE J. Photovolt., vol. 9, no. 3, pp. 811-821, May 2019.
[16] D. S. Pillai and N. Rajasekar, “An MPPT based sensorless line-line and line-ground fault detection technique for PV systems”, IEEE Trans. Power Electron., DOI 10.1109/TPEL.2018.2884292.
[17] Y. Hu, J. Zhang, W. Cao, J. Wu, G. Y. Tian, S. J. Finney, and J. L. Kirtley, “Online two-section PV array fault diagnosis with optimized voltage sensor locations”, IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7237-7246, Nov. 2015.
[18] Z. Yi and A. H. Etemadi, “Line-to-line fault detection for photovoltaic arrays based on multiresolution signal decomposition and two-stage support vector machine”, IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8546-8556, Nov. 2017.
[19] Z. Yi and A. H. Etemadi, “Fault detection for photovoltaic systems based on multi-resolution signal decomposition and fuzzy inference systems”, IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1274-1283, May 2017.
[20] Y. Zhao, R. Ball, J. Mosesian, J. F. de Palma, and B. Lehman, “Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays”, IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2848-2858, May 2015.
[21] H. Momeni, N. Sadoogi, M. Farrokhifar, and H. F. Gharibeh, “Fault diagnosis in photovoltaic arrays using GBSSL method and proposing a fault correction system”, IEEE Trans. Ind. Informat., DOI: 10.1109/TII.2019.2908992.
[22] O. Hachana, G. M. Tina, and K. E. Hemsas, “PV array fault diagnostic technique for BIPV systems”, Energy Buildings, vol. 126, pp. 263-274, 2016.
[23] S. Fadhel, C. Delpha, D. Diallo, I. Bahri, A. Migan, M. Trabelsi, and M. F. Mimouni, “PV shading fault detection and classification based on IV curve using principal component analysis: application to isolated PV system”, Sol. Energy, vol. 179, pp. 1-10, Feb. 2019.
[24] S. Spataru, D. Sera, T. Kerekes, and R. Teodorescu, “Diagnostic method for photovoltaic systems based on light I–V measurements”, Sol. Energy, vol. 119, pp. 29-44, 2015.
[25] W. Chine, A. Mellit, V. Lughi, A. Malek, G. Sulligoi, and A. M. Pavan, “A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks”, Renew. Energy, vol. 90, pp. 501-512, May 2016.
[26] Z. Chen, L. Wu, S. Cheng, P. Lin, Y. Wu, and W. Lin, “Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics”, Appl. Energy, vol. 204, pp. 912-931, Oct. 2017.
[27] A. Belaout, F. Krim, A. Mellit, B. Talbi, and A. Arabi, “Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification”, Renew. Energy, vol. 127, pp. 548-558, Nov. 2018.
[28] J. J. John, V. Rajasekar, S. Boppana, S. Chattopadhyay, A. Kottantharayil, and G. TamizhMani, “Quantification and modeling of spectral and angular losses of naturally soiled PV modules”, IEEE J. Photovol., vol. 5, no. 6, pp. 1727-1734, Nov. 2015.
[29] C. Schill, S. Brachmann, and M. Koeh, “Impact of soiling on IV-curves and efficiency of PV-modules”, Sol. Energy, vol. 112, pp. 259-262, Feb. 2015.
[30] P. D. Burton, A. Hendrickson, S. S. Ulibarri, D. Riley, W. E. Boyson, and B. H. King, “Pattern effects of soil on photovoltaic surfaces”, IEEE J. Photovolt., vol. 6, no. 4, pp. 976-980, Jul. 2016.
[31] J. J. John, S. Warade, G. Tamizhmani, and A. Kottantharayil, “Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India”, IEEE J. Photovolt., vol. 6, no. 1, pp. 1-8, Jan. 2016.
[32] J. M. Huang, R. J. Wai, and W. Gao, “Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-curve measurement”, IEEE Access, IEEE Access, vol. 7, no. 1, pp. 70919-70932, Dec. 2019.
[33] A. V. Joglekar and B. Hegde, “Online I-V tracer for per string monitoring and maintenance of PV panels”, 44th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1890-1894, Oct. 2018.
[34] C. B. Jones, B. H. Ellis, J. S. Stein, and J. Walters, “Comparative review of high resolution monitoring versus standard inverter data acquisition for a single photovoltaic power plant”, Proc. IEEE 7th World Conf. Photovolt. Energy Convers., pp. 715-720, Jun. 2018.
[35] Z. Chen, F. Han, L. Wu, J. Yu, S. Cheng, P. Lin, and H. Chen, “Random forest based intelligent fault diagnosis for PV arrays using array voltage and string currents”, Energy Convers. Manage., vol. 178, pp. 250-264, Dec. 2018.
[36] P. Lin, Y. Lin, Z. Chen, L. Wu, L. Chen, and S. Cheng, “A density peak-based clustering approach for fault diagnosis of photovoltaic arrays”, Int. J. Photo Energy, vol. 2017, no. 9, pp. 1-14, 2017.
[37] H. Zhu, L. Lu, J. Yao, S. Dai, and Y. Hu, “Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model”, Sol. Energy, vol. 176, pp. 395-405, Dec. 2018.
[38] S. Liu, L. Dong, X. Liao, Y. Hao, X. Cao and X. Wang, “A dilation and erosion-based clustering approach for fault diagnosis of photovoltaic arrays”, IEEE Sensors J., vol. 19, no. 11, pp. 4123-4137, June 2019.
[39] T. Joachims, “Transductive inference for text classification using support vector machines”, in Proc.16th ICML, San Francisco, CA, USA, pp. 200-209, 1999.
[40] O. Chapelle, M. Chi, and A. Zien, “A continuation method for semi-supervised SVMs”, in Proc. 23rd ICML, New York, USA, pp. 185-192, 2006.
[41] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local and global consistency”, Proc. 16th Adv. Neural Inf. Process. Syst., pp. 321-328, Dec. 2003.
[42] G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and unsupervised extreme learning machines”, IEEE Trans. Cybern., vol. 44, no. 12, pp. 2405-2417, Dec. 2014.
[43] A. Mellit, G. M. Tina, and S. A. Kalogirou, “Fault detection and diagnosis methods for photovoltaic systems: A review”, Renewable and Sustainable Energy Reviews, vol. 91, pp. 1-17, 2018.
[44] J. S. C. M. Raj and A. E. Jeyakumar, “A novel maximum power point tracking technique for photovoltaic module based on power plane analysis of I-V characteristics”, IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4734-4745, Sep. 2014.
[45] J. D. Bastidas-Rodríguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Model-based degradation analysis of photovoltaic modules through series resistance estimation”, IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7256-7265, Nov. 2015.
[46] K. Ishaque and Z. Salam, “An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE)”, Sol. Energy, vol. 85, pp. 2349-2359, 2011.
[47] J. J. Soon and K. S. Low, “Photovoltaic model identification using particle swarm optimization with inverse barrier constraint”, IEEE Trans. Power Electron., vol. 27, no. 9, pp. 3975-3983, Sep. 2012.
[48] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds”, SIAM J. Optim., vol. 6, pp. 418-445, 1996.
[49] T. F. Coleman and Y. Li, “On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds”, Math. Programm., vol. 67, no. 2, pp. 189-224, 1994.
[50] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, “Approximate solution of the trust region problem by minimization over two-dimensional subspaces”, Math. Program., vol. 40, no. 3, pp. 247-263, Jan. 1988.
[51] M. A. Branch, T. F. Coleman, and Y. Li, “A subspace interior and conjugate gradient method for large-scale bound-constrained minimization problems”, SIAM J. Sci. Comput., vol. 21, pp. 1-23, Aug. 1999.
[52] J. Kennedy, R. C. Eberhart, “Particle swarm optimization”, Proc. IEEE Int. Conf. Neural Netw., vol. 4, pp. 1942-1948, 1995.
[53] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, Proc. 6th Int. Symp. Micromachine Human Sci., pp. 39-43, 1995.
[54] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer”, Proc. IEEE World Congr. Comput. Intell., pp. 69-73, 1998.
[55] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization”, Proc. IEEE Congr. Evol. Comput., pp. 1945-1950, 1999.
[56] Y. Freund and R. E. Schapire, “A Decision-theoretic generalization of on-line learning and an application to boosting”, J. Computer and System Sciences, vol. 55, pp. 119-139, 1997.
[57] Y. Freund and R. Schapire, “Experiments with a New Boosting Algorithm”, Proc. 13th Int. Conf. Machine Learning, pp. 148-156, 1996.
[58] R. E. Schapire, “A brief introduction to boosting”, Proc. 16th Int. Joint Conf. Artificial Intell., 1999.
[59] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms, 2012.
[60] J. Zhu, Z. Hui, R. Saharon, and H. Trevor, “Multi-class adaboost”, Stat. Interface, vol. 2, no. 3, pp. 349-360, 2009.
[61] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, New York, USA: Taylor & Francis, 1984.
[62] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification”, IEEE Trans. Syst. Man. Cybern. Part B, vol. 42, no. 2, pp. 513-529, Apr. 2012.
[63] W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine for imbalance learning”, Neurocomputing, vol. 101, pp. 229-242, Feb. 2012.
[64] D. Karaboga, “An idea based on honey bee swarm for numerical optimization”, Technical Report -TR06, Oct. 2005.
[65] D. Karaboga and B. Basturk, “A comparative study of artificial bee colony algorithm”, Appl. Math. Comput., vol. 214, no. 1, pp. 108-132, Aug. 2009.
[66] P. L. Bartlett, “The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network”, IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, Mar. 1998.
[67] E. Schindelholz, B. B. Yang, K. M. Armijo, B. B. McKenzie, J. M. Taylor, N. R. Sorensen, and O. Lavrova, “Characterization of fire hazards of aged photovoltaic balance-of-systems connectors”, 42nd IEEE Photovoltaic Specialist Conf., pp. 1-6, Jun. 2015.
[68] P. Jackson, “Target roof PV fire of 4-5-09”, Development Services/Building Department, City of Bakersfield, CA, Memorandum, Apr. 2009.
[69] K. Xia, S. He, Y. Tan, Q. Jiang, J. Xu, and W. Yu, “Wavelet packet and support vector machine analysis of series DC ARC fault detection in photovoltaic system”, IEEJ Trans. Elect. Electron. Eng., vol. 14, no. 2, pp. 192-200, Feb. 2019.
[70] R. D. Telford, S. Galloway, B. Stephen, and I. Elders, “Diagnosis of series DC Arc faults-A machine learning approach”, IEEE Trans. Ind. Informat., vol. 13, no. 4, pp. 1598-1609, Aug. 2017.
[71] S. Lu, T. Sirojan, B. T. Phuang, D. Zhang, and E. Ambikairajah, “DA-DCGAN: An effective methodology for DC series arc fault diagnosis in photovoltaic systems”, IEEE ACCESS, vol. 7, pp. 45831-45840, Apr. 2019.
[72] G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis, “Training deep convolutional neural networks for land-cover classification of high-resolution imagery”, IEEE Geosci. Remote Sens. Lett., vol. 14, no. 4, pp. 549-553, Apr. 2017.
[73] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural networks for large-scale remote-sensing image classification”, IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 645-657, Feb. 2017.
[74] R. K. Joneset, A. Baras, A. A. Saeeri, A. A. Qahtani, A. O. A. Amoudi. Y. A. Shaya, M. Alodan, and S. A. Al-Hsaien, “Optimized cleaning cost and schedule based on ob-served soiling conditions for photovoltaic plants in central Saudi Arabia”, IEEE J. Photovolt., vol. 6, no. 3, pp. 730-738, May 2016.
[75] J. Zapata, M. Perez, S. Kouro, A. Lensu, and A. Suuronen, “Design of a cleaning program for a PV plant based on analysis of energy losses”, IEEE J. Photovolt., vol. 5, no. 6, pp. 1748-1756, Nov. 2015.

無法下載圖示 全文公開日期 2024/07/25 (校內網路)
全文公開日期 2029/07/25 (校外網路)
全文公開日期 2029/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE