簡易檢索 / 詳目顯示

研究生: 黃晨洋
Chen-Yang Huang
論文名稱: 可撓性與可拉伸性的軟性混和電子材料之製備、性質及其應用
Preparation, Properties, and Applications of Flexible Hybrid Electronic Materials with Flexibility and Stretchability
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
蔡協致
Hsieh-Chih Tsai
鄭如忠
Ru-Jong Jeng
廖英志
Ying-Chih Liao
孫亞賢
Ya-Sen Sun
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 可撓曲可拉伸軟性電子奈米纖維圖案化線路穿戴式感測電極
外文關鍵詞: Flexible electronics, Pre-stretched circuit
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性和拉伸可穿戴感測裝置有許多用途應用,包括電子的皮膚、健康裝置、可柔性顯示器和訊號收集裝置,透過感測器可以收到環境的物理或化學訊號的變化。由許多電路或複雜的分層矩陣陣列組成,並且通過複雜的生產過程製造,這導致大量的能量消耗並限制了廣泛應用。通過高效開發、可擴展和低成本的製造方案,導電與柔性的功能傳感器成為促進傳感系統發展的有競爭力和有吸引力的候選者。由於電子產品需要可柔性與可拉伸,軟性電子材料已經引起了廣泛關注,可透過添加碳材料或金屬的聚合物材料,因為該方法是減少成本消耗,同時保持材料的獨特性能。靜電紡絲技術可以快速製備奈米纖維方式,透過纖維具備可拉伸結構,在柔性裝置可以更快速並且簡易製造。在這項研究中,透過聚合物對奈米材料的分散性,對於材料分散後的表面電阻影響性,探討製備方式對於導電性與可拉伸/可撓曲性質,結果顯示隨著電阻的降低,加工方式製備出的電子材料,可以增加生理訊號中的穩定性,並減少訊號中個雜訊干擾。 第一部分提出新型纖維碳電極的製備技術,是將聚醚單胺接枝在苯乙烯馬來酸酐上形成梳子狀共聚物,分散碳黑與石墨烯並添加聚氨酯製作靜電紡絲碳收集板,運用紡絲技術本身正負極性特性將纖維沉積在收集板上,形成纖維碳電極,纖維碳電極表現出穩定撓曲性與導電性,且在不同運動狀態下測量心電圖,並且可以偵測微小肌電訊號改變,可用於可連續監測訊號偵測。 第二部分是新型(聚異丁烯-b-聚(氧乙烯)-b-聚異丁烯)三嵌段共聚物,通過共價鍵吸附方式穩定奈米銀顆粒大小與吸附三種不同維度結構奈米碳材料上,將紡絲後纖維浸漬在導電混合溶液中得到導電奈米纖維,研究結果,摻混後纖維具有高穩定電性及拉伸強度,改善第一部分機械與導電特性,在不同環境下可提高訊號穩定度且減少診斷錯誤可能性。透過疲勞試驗,製備纖維電極可適用於長時間裝置監測可用性,並推動了這些有前途的材料在穿戴式應用中的未來前景。 第三部分中,本研究透過奈米銀包銅樹枝狀材料與石墨烯製備預拉伸線路,與奈米碳材製備電極應用於智慧服飾感測器。奈米碳材料包括碳黑(carbon black)與石墨烯(graphene)作為導電填充物以及聚氨酯為基材,其中關鍵性之奈米分散原理是以含有一個親脂性的烴基基團和一個親水性的聚乙二醇鏈段之非離子型分散劑(Triton X-100)作為物理分散碳黑與石墨烯兩種奈米材料。透過研究證實,三種不同形狀預拉伸線路,馬蹄形圖案化線路結合碳電極可以用在連接多部位穿戴式裝置,並且可同步偵測心電圖與肌電圖訊號。


    Flexible electronic materials can be applied in a wide range of applications. Anything that the final electronic product can achieve flexibility or bending characteristics belongs to the generalized flexible electronic materials. There are many flexible electronics and related technical projects or products, such as flexible substrates, organic electronics and optoelectronic materials, polymer semiconductors, printable materials, organic photodiode displays and wearable devices. In view of the trend and development of technology, flexible substrates made of metal and polymer materials have emerged. Compared with silicon substrates and glass substrates, it has disadvantages such as hard material and fixed area. Other processing methods can be used to prepare flexible substrates. Nanofiber and patterned circuit design overcome this and greatly increase the feasibility of fabrication. First part, a carbon electrode was synthesized from carbon black, reduced graphene oxide and polyurethane and, subsequently, used as the collector for electrospinning. During electrospinning, nanofibers were deposited on the carbon film collector. The carbon electrode and the deposited nanofibers collectively form a nanofiber carbon electrode. Finally, a stretchable and flexible nanofiber membrane sensing electrode was successfully developed and applied in smart clothing for ECG and EMG monitoring. The nanofibers were generated from polyvinylidene difluoride (PVDF) and PEDOT:PSS via mixing and electrospinning. In addition, CB/rGO carbon film was used as the electrospinning collector. The addition of dispersant in the carbon film improved its electrical conductivity as well as its stretchability. The results show that the nanofiber carbon electrode prepared from electrospinning exhibits a high electrical conductivity, high mechanical durability, and hydrophobic surface. Compared with the traditional commercial electrode, the nanofiber carbon electrode developed in this study exhibited good contact with human skin and excellent durability. Second part, mainly discusses the preparation of PU and PVDF fiber fabric electrodes by using side-by-side electrospinning device. Impregnating AgNPs/Carbon-based materials of different dimensions on PU/PVDF nanocomposite fibers can be used to measure electrocardiogram signals. A Novel of polymer dispersant (polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene) triblock copolymer, which can stabilize the size of AgNPs and adsorb in different dimensions Carbon-based. The results show that AgNPs/rGO fibers exhibit the lowest electrical resistance, and the tensile performance results show that graphene has higher tensile strength and elongation at break. Compare with traditional electrodes, and perform signal statistics and waveform shape analysis. Conductive nanofiber electrodes are suitable for long-term ECG monitoring and can be used for wearable smart sensors. In the third part, this research mainly uses nano silver-coated copper to prepare pre-stretched circuits and nano carbon materials to prepare electrodes for smart clothing sensors. Nano-carbon materials include carbon black and graphene as conductive fillers and polyurethane as the substrate. The dispersion principle is to contain a lipophilic hydrocarbon group and a hydrophilic one. Polyethylene glycol segment non-ionic dispersant (Triton X-100) is used as two carbon materials for surface physical modification carbon black and graphene. The pre-stretched circuit is made of dendritic Ag@Cu mixed with graphene to prepare a patterned circuit. The combination of electrodes and patterned circuits can be used in wearable devices, and can detect physiological signals EMG.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 x 表目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 第二章 文獻回顧 3 2.1 奈米導電材料 3 2.1.1 奈米金屬材料 3 2.1.2 奈米碳材料 4 2.1.3 導電高分子材料 7 2.1.4 分散劑 9 2.2 加工技術 11 2.2.1 網版塗布 11 2.2.2 靜電紡絲 12 2.2.3 壓印技術 17 2.2.4 3D列印應用 18 2.3 生物訊號分析 19 2.3.1 心電圖(Electrocardiogram, EKG/ECG) 22 2.3.2 肌電圖(Electromyography, EMG) 23 2.3.3生醫訊號 24 第三章、用靜電紡絲製備可拉伸柔性奈米纖維膜感測電極應用於智慧服飾 26 3.1實驗說明 26 3.1.1 奈米纖維膜感測電極材料 27 3.1.2 高分子型分散劑SMA-M1000的製備與分析 28 3.1.3 CB/rGO/SMA-M1000分散液的製備 31 3.1.4 靜電紡絲導電碳材料收集器的製備 31 3.1.5 奈米導電纖維製備 32 3.1.6 奈米纖維碳電極的製備與生物信號測量 32 3.1.7 儀器資料 33 3.2結果與討論 34 3.2.1 SMA-M1000共聚物分散性評估 34 3.2.2 奈米纖維結構分析 37 3.2.3 奈米纖維碳電極阻抗分析 39 3.2.4 奈米纖維碳電極物理特性 40 3.2.5 ECG生物訊號量測分析 41 3.2.6 EMG生物訊號量測分析 42 3.3 結論 43 第四章、疊層聚偏二氟乙烯/聚氨酯奈米纖維膜混參奈米銀/碳基材料製備高拉伸和導電穩定性的奈米複合纖維電極及其在可穿戴電子傳感器應用 44 4.1 實驗說明 44 4.1.1 材料 46 4.1.2 PIB–POE–PIB三嵌段共聚物合成與鑑定 46 4.1.3 碳基材料酸化製備 49 4.1.4 AgNPs/Carbon-based/ PIB–POE–PIB 混合導電溶液製備 50 4.1.5 奈米材料/微米纖維膜質製備 50 4.1.6 導電纖維膜製備 51 4.1.7 導電纖維膜生物訊號分析 51 4.1.8 儀器資料 52 4.2 結果與討論 53 4.2.1 AgNPs/Carbon-based/PIB–POE–PIB分散 53 4.2.2 奈米纖維膜結構 55 4.2.3 導電奈米纖維複合膜表徵 58 4.2.4 導電奈米纖維複合膜熱穩定與機械分析 59 4.2.5 導電奈米纖維複合膜生物訊號感測 62 4.3 結論 64 第五章、導電奈米材料於印刷預拉伸結構於穿戴式服飾 65 5.1 實驗說明 65 5.1.1材料 65 5.1.2 碳黑/石墨烯漿料製作 66 5.1.3 銀包銅導電漿料製作 66 5.1.4 預拉伸電極製作 66 5.1.5 預拉伸圖案電極ECG/EMG訊號 66 5.1.6 儀器資料 67 5.2 結果與討論 68 5.2.1 碳黑/石墨烯/Triton X-100分散 68 5.2.2 碳黑/石墨烯/Triton X-100 表面與機械分析 69 5.2.3預拉伸線路表面形貌分析 70 5.2.4三種預拉伸線路50%、100%/500拉伸電阻變化 72 5.2.5 ECG+EMG動態生理訊號 74 5.3 結論 75 第六章、總結 76 參考文獻 77 附錄:學術成就 87

    1. Goldberg, E. D. Black Carbon in The Environment: Properties and Distribution. 1985.
    2. Jawhari, T.; Roid, A.; Casado, J. Raman Spectroscopic Characterization of Some Commercially Available Carbon Black Materials. Carbon 1995. 33, 1561-1565.
    3. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991. 354, 56-58.
    4. Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature 1993. 363, 603-605.
    5. Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530-1534.
    6. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nanoscience and Technology: A Collection of Reviews From Nature Journals. 2010 World Scientific, 11-19.
    7. Stankovich, S.; Dikin, D. A.; Geoffrey H. B.; Dommett, K. M.; Kohlhaas, E. J.; Zimney, E. A. Stach, R. D.; Piner, S. T. N.; Rodney S. R. Graphene-Based Composite Materials. Nature 2006, 442, 282-286.
    8. Rao, C. E. E.; Sood, A. E.; Subrahmanyam, K. E.; Govindaraj, A. Graphene: The New Two‐Dimensional Nanomaterial. Angewandte Chemie International Edition 2009, 48, 7752-7777.
    9. Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. Journal of Nanoparticle Research 2009, 11, 77-89.
    10. Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4, 3155-3162.
    11. Luo, J.; Duan, Z.; Li, H. The Influence of Surfactants on The Processing of Multi‐Walled Carbon Nanotubes in Reinforced Cement Matrix Composites. Physica Status Solidi (a) 2009, 206, 2783-2790.
    12. Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006. 17, R89.
    13. Tan, S.; Huang, X.; Wu,B. Some Fascinating Phenomena in Electrospinning Processes and Applications of Electrospun Nanofibers. Polymer International, 2007, 56, 1330-1339.
    14. Singh, B. N.; Tiwari, A. K. Optimal Selection of Wavelet Basis Function Applied to ECG Signal Denoising. Digital Signal Processing 2006, 16, 275-287.
    15. Sameni, R.; Clifford, G. D. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. The Open Pacing, Electrophysiology & Therapy Journal, 2010, 3, 4.
    16. Addison, P. S. Wavelet Transforms and The ECG: A Review. Physiological Measurement 2005, 26, R155.
    17. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature Reduction and Selection for EMG Signal Classification. Expert Systems with Applications 2012, 39, 7420-7431.
    18. Reaz, M. B. I.; Hussain, M. S.; Mohd-Yasin, F. Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications. Biological Procedures Online 2006. 8, 11-35.
    19. Ahsan, M. R.; Ibrahimy, M. I.; Khalifa, O. O. EMG Signal Classification for Human Computer Interaction: A Review. European Journal of Scientific Research 2009, 33, 480-501.
    20. Fahoum, A. S.; Fraihat, A. A. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. International Scholarly Research Notices, 2014, 2014.
    21. Pardey, J.; Roberts, S.; Tarassenko, L. A Review of Parametric Modelling Techniques for EEG Analysis. Medical Engineering & Physics 1996, 18, 2-11.
    22. Motamedi-Fakhr, S.; Moshrefi-Torbati, M.; Hill, M.; Hill, C. M.; White, P. R. Signal Processing Techniques Applied to Human Sleep EEG Signals—A Review. Biomedical Signal Processing and Control 2014, 10, 21-33.
    23. Son, D.; Lee, J.; Qiao, S.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W.; Yang, S.; Park, M.; Shin, J.; Do, K.; Lee, M.; Kangm K.; Hwang, C. S.; Lu, N.; Hyeon, T.; Kim, D. H. Multifunctional Wearable Devices for Diagnosis and Therapy of Movement Disorders. Nature Nanotechnology 2014, 9, 397.
    24. Patel, M. S.; Asch, D. A.; Volpp, K. G. Wearable Devices as Facilitators, Not Drivers, of Health Behavior Change. Jama 2015, 313, 459-460.
    25. Motti, V. G.; Caine, K. Human Factors Considerations In The Design Of Wearable Devices. In Proceedings Of The Human Factors And Ergonomics Society Annual Meeting. 2014. SAGE Publications Sage CA: Los Angeles, CA.
    26. Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Communications Surveys & Tutorials, 2017, 19, 2573-2620.
    27. Billinghurst, M.; Starner, T. Wearable Devices: New Ways to Manage Information. Computer, 1999, 32, 57-64.
    28. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677
    29. Compton, O. C.; Nguyen, S. T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon‐Based Materials. Small, 2010, 6, 711-723.
    30. Li, L.; Pan, L.; Ma, Z.; Yan, K.; Cheng, W.; Shi, Y.; Yu, G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based On Nanostructured Conductive Hydrogel Electrodes. Nano Letters 2018, 18, 3322-3327.
    31. Ma, Z.; Chen, P.; Cheng, W.; Yan, K.; Pan, L.; Shi, Y.;Yu, G. Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. Nano Letters 2018, 18, 4570-4575.
    32. Wang, Y. F.; Sekine, T.; Takeda, Y.; Hong, J.; Yoshida, A.; Matsui, H.; Kumaki, D.; Nishikawa, T.; Shiba, T.; Tokito, S. Printed Strain Sensor with High Sensitivity and Wide Working Range Using a Novel Brittle–Stretchable Conductive Network. ACS Appl. Mater. Interfaces 2020, 12,35282-35290.
    33. Xu, Q.; Liu, H.; Zhong, X.; Jiang, B.; Ma, Z. Permeable Weldable Elastic Fiber Conductors for Wearable Electronics. ACS Appl. Mater. Interfaces 2020, 12, 36609-36619.
    34. Wu, R.; Ma, L.; Patil, A.; Hou, C.; Zhu, S.; Fan, X.; Lin, H.; Yu, W.; Guo, W.; Liu, X. Y. All-Textile Electronic Skin Enabled by Highly Elastic Spacer Fabric and Conductive Fibers. ACS Appl. Mater. Interface 2019, 11, 33336-33346.
    35. Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B. All‐Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials 2020, 30, 1908411.
    36. Wang, Y.; Niu, W.; Lo, C. Y.; Zhao, Y.; He, X.; Zhang, G.; Wu, S.; Ju B.; Zhang, S. Interactively Full‐Color Changeable Electronic Fiber Sensor with High Stretchability and Rapid Response. Advanced Functional Materials 2020, 30, 2000356.
    37. Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, Highly Stretchable, And Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon Nanocomposites for All-In-One ECG Electrodes. ACS Nano, 2016, 10,4770-4778.
    38. Foster, M.; Erb, P.; Plank, B.; West, H.; Russenberger, J.; Gruen, M.; Daniele, M.; Roberts, D.; Bozkurt, A. 3D-Printed Electrocardiogram Electrodes for Heart Rate Detection in Canines. IEEE BioCAS 2018, 1-4.
    39. Celik, N.; Manivannan, N.; Strudwick, A.; Balachandran, W. Graphene-Enabled Electrodes for Electrocardiogram Monitoring. Nanomaterials, 2016 6,156.
    40. Sadikoglu, F.; Kavalcioglu, C.; Dagman, B. Electromyogram (EMG) Signal Detection, Classification of EMG Signals And Diagnosis of Neuropathy Muscle Disease. Procedia Computer Science 2017, 120, 422-429.
    41. Beyramienanlou, H.; Lotfivand, N. Shannon’s Energy Based Algorithm in ECG Signal Processing. Computational and Mathematical Methods in Medicine 2017, 2017.
    42. Raj, S.; K. C. Ray ECG Signal Analysis Using DCT-Based DOST and PSO Optimized SVM. IEEE Transactions On Instrumentation And Measurement 2017, 66, 470-478.
    43. Sinha, S. K.; Alamer, F. A.; Woltornist, S. J.; Noh, Y.; Chen, F.; McDannald, A.; Allen, C.; Daniels, R.; Deshmukh, A.; Jain, M.; Chon, K.; Adamson, D. H.; Sotzing, G. A. Graphene and Poly(3,4-ethylene dioxythiophene):Poly(4-styrenesulfonate) on Nonwoven Fabric as a Room Temperature Metal and Its Application as Dry Electrodes for Electrocardiography, ACS Appl. Mater. Interfaces. 2019, 11, 32339–32345.
    44. Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG Analysis: A New Approach in Human Identification. IEEE Trans. Instrum. Meas. 2001, 50, 808-812.
    45. Francisco, C.; Pablo, L.; Leif, S.; Andreas, B.; José, M. R. Principal Component Analysis in ECG Signal Processing. EURASIP J. Adv. Signal Process. 2007, 2007, No. 074580.
    46. McSharry, P. E.; Clifford, G. D.; Tarassenko, L.; Smith, L. A. A Dynamical Model for Generating Synthetic Electrocardiogram Signals. IEEE. Trans. Biomed. Eng. 2003, 50, 289-294.
    47. Drake, J. D.; Callaghan, J. P. Callaghan, Elimination of Electrocardiogram Contamination from Electromyogram Signals: An Evaluation of Currently Used Removal Techniques. J. Electromyogr. Kinesiol. 2006, 16, 175-187.
    48. Chae, H.; Kwon, H. J.; Kim, Y. K.; Won, Y.; Kim, D.; Park, H. J.; Kim, S.; Gandla, S. Laser-Processed Nature-Inspired Deformable Structures for Breathable and Reusable Electrophysiological Sensors toward Controllable Home Electronic Appliances and Psychophysiological Stress Monitoring ACS Appl. Mater. Interfaces, 2019, 11, 28387–28396.
    49. Chowdhury, R. H.; Reaz, M. B.; Ali, M. A. B. M.; Bakar, A. A.; Chellappan, K.; Chang, T. G. Surface Electromyography Signal Processing and Classification Techniques. Sensors, 2013, 13, 12431-12466.
    50. Subha, D. P.; Joseph, P. K.; Acharya, R.; Lim, C. M. EEG Signal Analysis: A Survey. J. Med. Syst. 2010, 34, 195-212.
    51. Fernandez, M.; Pallas-Areny, R. Ag-AgCl Electrode Noise in High-Resolution ECG Measurements. Biomed. Instrum. Technol. 2000, 34, 125-130.
    52. Xu, S.; Dai, M.; Xu, C.; Chen, C.; Tang, M.; Shi, X.; Dong, X. Performance Evaluation of Five Types of Ag/AgCl Bio-Electrodes for Cerebral Electrical Impedance Tomography. Ann Biomed. Eng. 2011, 39, 2059-2067.
    53. Rautaharju, P. M.; Wolf, H. K.; Eifler, W. J.; Blackburn, H. A Simple Procedure for Positioning Precordial ECG and VCG Electrodes Using An Electrode Locator. J. Electrocardiol 1976, 9, 35-40.
    54. Xie, Y.; Zheng, Y.; Fan, J.; Wang, Y.; Yue, L.; Zhang, N. Novel Electronic–Ionic Hybrid Conductive Composites for Multifunctional Flexible Bioelectrode Based on in Situ Synthesis of Poly(dopamine) on Bacterial Cellulose. ACS Appl. Mater. Interfaces. 2018, 10, 22692–22702.
    55. Chlaihawi, A. A.; Narakathu, B. B.; Emamian, S.; Bazuin, B. J.; Atashbar, M. Z. Development of Printed and Flexible Dry ECG Electrodes. Sensing and Bio-Sensing Research, 2018, 20, 9-15.
    56. Li, X.; Li, Z.; Wang, L.; Ma, G.; Meng, F.; Pritchard; R. H.; Gill, E. L.; Liu, Y.; Huang, Y. Y. S. Low-Voltage Continuous Electrospinning Patterning. ACS Appl. Mater. Interfaces 2016, 8, 32120–32131.
    57. Zhou, X.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-Coated Silicon Nanoparticle/Graphene Electrode as A Binder-Free Anode for High-Performance Lithium-Ion Batteries. Nano Res. 2012, 5, 845-853.
    58. Salvo, P.; Raedt, R.; Carrette, E.; Schaubroeck, D.; Vanfleteren, J.; Cardon, L. A 3D Printed Dry Electrode for ECG/EEG Recording. Sens. Actuator A Phys. 2012, 174, 96-102.
    59. Sambaer, W.; Zatloukal, M.; Kimmer, D. 3D Modeling of Filtration Process via Polyurethane Nanofiber Based Nonwoven Filters Prepared by Electrospinning Process. Chem. Eng. Sci. 2011, 66, 613-623.
    60. Liu, X.; Marlow, M. N.; Cooper, S. J.; Song, B.; Chen, X.; Brandon, N. P.; Wu, B. Flexible All-Fiber Electrospun Supercapacitor. J. Power Sources 2018, 384, 264-269.
    61. Han, W.; Wang, Y.; Su, J.; Xin, X.; Guo, Y.; Long, Y. Z.; Ramakrishna, S.Fabrication of nanofibrous sensors by electrospinning. Sci. China Technol. Sci. 2019, 62, 1-9.
    62. Zheng, B.; Liu, G.; Yao, A.; Xiao, Y.; Du, J.; Guo, Y.; Xiao, D.; Hu, Q.; Choi, M. M. A Sensitive AgNPs/CuO Nanofibers Non-Enzymatic Glucose Sensor Based on Electrospinning Technology. Sens. Actuators B Chem. 2014, 195, 431-438.
    63. Sill, T. J.; von Recum, H. A., Electrospinning: Applications in Drug Delivery and Tissue Engineering. Biomaterials 2008, 29, 1989-2006.
    64. Stankovich S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., et al., Graphene-Based Composite Materials. Nature 2006, 442, 282.
    65. Frank, I. W.; Tanenbaum, D. M.; van der Zande, A. M.; McEuen, P. L. Mechanical Properties of Suspended Graphene Sheets. J. Vac. Sci. Technol. B 2007, 25, 2558-2561.
    66. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Mater. Lett. 2008, 8, 902-907.
    67. Sun, L.; Fugetsu, B. Mass Production of Graphene Oxide from Expanded Graphite. Mater. Lett. 2013, 109, 207-210.
    68. Fu, Y.; Wang, X. Magnetically Separable ZnFe2O4–Graphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation. Ind. Eng. Chem. Res, 2011, 50, 7210-7218.
    69. Sun, Y.; Wu, Q.; Shi, G. Graphene Based New Energy Materials. Energy Environ. Sci. 2011, 4, 1113-1132.
    70. Williams, G.; Kamat, P. V. Graphene-Semiconductor Nanocomposites: Excited-State Interactions between ZnO Nanoparticles and Graphene Oxide. Langmuir, 2009, 25, 13869-13873.
    71. Su, Q.; Pang, S.; Alijani, V.; Li, C., Feng, X.; Müllen, K. Composites of Graphene with Large Aromatic Molecules. Adv. Mater. 2009, 21, 3191-3195.
    72. Coleman, J. N. Liquid‐Phase Exfoliation of Nanotubes and Graphene. Adv. Funct. Mater. 2009, 19, 3680-3695.
    73. Wojtoniszak, M.; Chen, X.; Kalenczuk, R. J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P. K.; Borowiak-Palen, E. Synthesis, Dispersion, and Cytocompatibility of Graphene Oxide and Reduced Graphene Oxide. Colloids Surf. B 2012, 89, 79-85.
    74. Lou, C.; Li, R.; Li, Z.; Liang, T.; Wei, Z.; Run, M.; Yan, X.; Liu, X. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring. Sensors , 2016, 16, 1833.
    75. Kim, H. W.; Kim, T. Y.; Park, H. K.; You, I.; Kwak, J.; Kim, J. C.; Hwang H,; Kim, H. S.; Jeong, U. Hygroscopic Auxetic On-Skin Sensors for Easy-to-Handle Repeated Daily Use. ACS Appl. Mater. Interfaces 2018, 10, 40141-40148.
    76. Lin, J. J.; Hsu, Y. C. Temperature and ph-Responsive Properties of Poly (styrene-co-maleic anhydride)-Grafting Poly (oxypropylene)-Amines. J. Colloid Interface Sci. 2009, 336, 82-89.
    77. Yoo, M. J.; Kim, H. W.; Yoo, B. M.; Park, H. B. Highly Soluble Polyetheramine-Functionalized Graphene Oxide and Reduced Graphene Oxide Both in Aqueous and Non-Aqueous Solvents. Carbon, 2014, 75, 149-160.
    78. Fong, H.; Chun, I.; Reneker, D. H. Beaded Nanofibers Formed During Electrospinning. Polym. 1999, 40, 4585-4592.
    79. Zaarour, B.; Zhang, W.; Zhu, L.; Jin, X. Y.; Huang, C. Maneuvering Surface Structures of Polyvinylidene Fluoride Nanofibers by Controlling Solvent Systems and Polymer Concentration. Text. Res. J. 2019, 89, 2406-2422.
    80. Roy, K.; Ghosh, S. K.; Sultana, A.; Garain, S.; Xie, M.; Bowen, C. R.; Henkel, K.; Schmeiβer, D.; Mandal, D. A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013-2025.
    81. Moghadam, B. H.; Hasanzadeh, M.; Simchi, A. Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring. ACS Appl. Nano Mater. 2020, 3, 8742-8752.
    82. Ramírez, J.; Rodriquez, D.; Urbina, A. D.; Cardenas, A. M.; Lipomi, D. J. Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS. ACS Appl. Nano Mater. 2019, 2, 2222-2229.
    83. Su, M.; Kim, B. Silk Fibroin-Carbon Nanotube Composites based Fiber Substrated Wearable Triboelectric Nanogenerator. ACS Appl. Nano Mater. 2020.
    84. Pataniya, P.; Zankat, C. K.; Tannarana, M.; Sumesh, C.; Narayan, S.; Solanki, G.; Patel, K.; Pathak, V.; Jha, P. K. Based Flexible Photodetector Functionalized by WSe2 Nanodots. ACS Appl. Nano Mater. 2019, 2, 2758-2766.
    85. Rauf, S.; Vijjapu, M. T.; Andres, M. A.; Gascón, I.; Roubeau, O.; Eddaoudi, M.; Salama, K. N. A Highly Selective Metal–Organic Framework Textile Humidity Sensor. ACS Appl. Mater. Interfaces 2020.
    86. Wang, A. J.; Maharjan, S.; Liao, K.-S.; McElhenny, B. P.; Wright, K. D.; Dillon, E. P.; Neupane, R.; Zhu, Z.; Chen, S.; Barron, A. R. Poly (octadecyl acrylate)-Grafted Multiwalled Carbon Nanotube Composites for Wearable Temperature Sensors. ACS Appl. Nano Mater. 2020, 3, 2288-2301.
    87. Zhao, S.; Li, J.; Cao, D.; Zhang, G.; Li, J.; Li, K.; Yang, Y.; Wang, W.; Jin, Y.; Sun, R. Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Appl. Mater. Interfaces 2017, 9, 12147-12164.
    88. Rossetti, N.; Luthra, P.; Hagler, J. E.; Jae Lee, A. H.; Bodart, C. m.; Li, X.; Ducharme, G.; Soavi, F.; Amilhon, B.; Cicoira, F. Poly(3,4-ethylenedioxythiophene)(PEDOT) Coatings for High-Quality Electromyography Recording. ACS Appl. Bio Mater. 2019, 2, 5154-5163.
    89. Kim, N.; Lim, T.; Song, K.; Yang, S.; Lee, J. Stretchable Multichannel Electromyography Sensor Array Covering Large Area for Controlling Home Electronics with Distinguishable Signals from Multiple Muscles. ACS Appl. Mater. Interfaces 2016, 8, 21070-21076.
    90. Ameri, S. K.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. Graphene Electronic Tattoo Sensors ACS Nano 2017, 11, 7634–7641
    91. Kim, J. H.; Kim, S. R.; Kil, H. J.; Kim, Y. C.; Park, J.-W. Highly Conformable, Transparent Electrodes for Epidermal Electronics. Nano Letters 2018, 18, 4531-4540.
    92. Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D–2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes. ACS Nano 2016, 10, 4770-4778.
    93. Li, H.; Wang, H.; Pan, J.; Li, J.; Zhang, K.; Duan, W.; Liang, H.; Chen, K.; Geng, D.; Shi, Q. Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 36823-36836.
    94. Huang, G. W.; Li, N.; Liu, Y.; Qu, C. B.; Feng, Q. P.; Xiao, H. M. Binder-Free Graphene/Silver Nanowire Gel-Like Composite with Tunable Properties and Multifunctional Applications. ACS Appl. Mater. Interfaces 2019, 11, 15028-15037.
    95. Min, H.; Jang, S.; Kim, D. W.; Kim, J.; Baik, S.; Chun, S.; Pang, C. Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches. ACS Appl. Mater. Interfaces 2020, 12, 14425-14432.
    96. Wang, J.; Suzuki, R.; Shao, M.; Gillot, F.; Shiratori, S. Capacitive Pressure Sensor with Wide-Range, Bendable, and High Sensitivity Based on The Bionic Komochi Konbu Structure and Cu/Ni Nanofiber Network. ACS Appl. Mater. Interfaces 2019, 11, 11928-11935.
    97. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano 2014, 8, 5154-5163.
    98. Sinha, S. K.; Noh, Y.; Reljin, N.; Treich, G. M.; Hajeb-Mohammadalipour, S.; Guo, Y.; Chon, K. H.; Sotzing, G. A. Screen-Printed PEDOT: PSS Electrodes on Commercial Finished Textiles for Electrocardiography. ACS Appl. Mater. Interfaces 2017, 9, 37524-37528.
    99. Chae, W. H.; Sannicolo, T.; Grossman, J. C. Double-Sided Graphene Oxide Encapsulated Silver Nanowire Transparent Electrode with Improved Chemical and Electrical Stability. ACS Appl. Mater. Interfaces 2020, 12, 17909-17920.
    100. Sinha, S. K.; Alamer, F. A.; Woltornist, S. J.; Noh, Y.; Chen, F.; McDannald, A.; Allen, C.; Daniels, R.; Deshmukh, A.; Jain, M. Graphene and Poly (3,4-ethylene dioxythiophene): Poly (4-styrenesulfonate) on Nonwoven Fabric as a Room Temperature Metal and Its Application as Dry Electrodes for Electrocardiography. ACS Appl. Mater. Interfaces 2019, 11, 32339-32345.
    101. Zahed, M. A.; Das, P. S.; Maharjan, P.; Barman, S. C.; Sharifuzzaman, M.; Yoon, S. H.; Park, J. Y. Flexible and Robust Dry Electrodes Based on Electroconductive Polymer Spray-Coated 3D Porous Graphene for Long-Term Electrocardiogram Signal Monitoring System. Carbon 2020.
    102. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298-5415.
    103. Wang, K.; Liu, X.-K.; Chen, X.-H.; Yu, D.-G.; Yang, Y.-Y.; Liu, P. Electrospun Hydrophilic Janus Nanocomposites for The Rapid Onset of Therapeutic Action of Helicid. ACS Appl. Mater. Interfaces 2018, 10, 2859-2867.
    104. Han, D.; Yu, X.; Chai, Q.; Ayres, N.; Steckl, A. J. Stimuli-Responsive Self-Immolative Polymer Nanofiber Membranes Formed by Coaxial Electrospinning. ACS Appl. Mater. Interfaces 2017, 9, 11858-11865.
    105. Simotwo, S. K.; DelRe, C.; Kalra, V. Supercapacitor Electrodes Based On High-Purity Electrospun Polyaniline and Polyaniline–Carbon Nanotube Nanofibers. ACS Appl. Mater. Interfaces 2016, 8, 21261-21269.
    106. Qi, K.; He, J.; Wang, H.; Zhou, Y.; You, X.; Nan, N.; Shao, W.; Wang, L.; Ding, B.; Cui, S. A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42951-42960.
    107. Alam, M. M.; Sultana, A.; Mandal, D. Biomechanical and Acoustic Energy Harvesting from Tio2 Nanoparticle Modulated PVDF Nanofiber Made High Performance Nanogenerator. ACS Appl. Energy Mater. 2018, 1, 3103-3112.
    108. Han, J.; Wang, S.; Zhu, S.; Huang, C.; Yue, Y.; Mei, C.; Xu, X.; Xia, C. Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use As High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Appl. Mater. Interfaces 2019, 11, 44624-44635.
    109. Maity, K.; Mandal, D. All-Organic High-Performance Piezoelectric Nanogenerator with Multilayer Assembled Electrospun Nanofiber Mats for Self-Powered Multifunctional Sensors. ACS Appl. Mater. Interfaces 2018, 10, 18257-18269.
    110. Zhang, T.; Nie, X.; Zhang, C.; Yang, D.; Qiu, F. Novel Flower-Like Zno Hybridized with Acrylic Ester Resin for Enhanced Oil Absorption Properties. Polym. Plast. Technol. Eng. 2018, 57, 1665-1675.
    111. Wang, H.; Wang, W.; Wang, H.; Jin, X.; Niu, H.; Wang, H.; Zhou, H.; Lin, T. High Performance Supercapacitor Electrode Materials from Electrospun Carbon Nanofibers in Situ Activated by High Decomposition Temperature Polymer. ACS Appl. Energy Mater. 2018, 1, 431-439.
    112. Hajian, A.; Lindström, S. B.; Pettersson, T.; Hamedi, M. M.; Wågberg, L. Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Letters 2017, 17, 1439-1447.
    113. Cai, M.; He, H.; Zhang, X.; Yan, X.; Li, J.; Chen, F.; Yuan, D.; Ning, X. Efficient Synthesis of PVDF/PI Side-by-Side Bicomponent Nanofiber Membrane With Enhanced Mechanical Strength and Good Thermal Stability. Nanomaterials 2019, 9, 39.
    114. Ding, Y.; Xu, W.; Wang, W.; Fong, H.; Zhu, Z. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens Toward Wearable Conductive Textile Applications. ACS Appl. Mater. Interfaces 2017, 9, 30014-30023.
    115. Huang, P. Y.; Chiu, C. W.; Huang, C. Y.; Shen, S. Y.; Lee, Y. C.; Cheng, C. C.; Jeng, R. J.; Lin, J. J. Facile Fabrication of Flexible Electrodes and Immobilization of Silver Nanoparticles on Nanoscale Silicate Platelets to Form Highly Conductive Nanohybrid Films for Wearable Electronic Devices. Nanomaterials 2020, 10, 65.
    116. Chiu, C. W.; Li, J. W.; Huang, C. Y.; Yang, S. S.; Soong, Y. C.; Lin, C. L.; Lee, J. C. M.; Sanchez, W. A. L.; Cheng, C. C.; Suen, M. C. Controlling the Structures, Flexibility, Conductivity Stability of Three-Dimensional Conductive Networks of Silver Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their Application in Wearable Electronic Sensors. Nanomaterials 2020, 10, 1009.
    117. Chen, J.; Yao, B.; Li, C.; Shi, G. An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide. Carbon 2013, 64, 225-229.
    118. Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method. Sci. Rep. 2016, 6, 36143.
    119. M. S. Dresselhaus, Y. M. Lin, O. Rabin, A. Jorio, A. G. Souza Filho, M. A. Pimenta, R. Saito, G. Samsonidze, and G. Dresselhaus. Mat. Sci. Eng. C 2003 23, 129-140.

    無法下載圖示 全文公開日期 2026/02/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE