簡易檢索 / 詳目顯示

研究生: 魏皓渝
Hao-yu Wei
論文名稱: 鋰釩氧化物負極之鋰離子混合式電容器
Lithium ion hybrid capacitors with a negative electrode of lithium vanadate
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 陳燿騰
Yaw-terng Chern
許貫中
Kuan-chung Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 鋰離子混合式電容器平行板電容器鋰嵌入嵌出負極材料鋰釩氧化物鋰化程序正負極重量比例電位窗口
外文關鍵詞: lithium ion hybrid capacitor, parallel-plate capacitors, lithium intercalation/deintercalation, negative electrode materials, lithium vanadate, lithiation, anode/cathode active material weight ratio, potential window
相關次數: 點閱:439下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們使用平行板電容器量具,鋰嵌入特性Li3VO4負極及活性碳正極行研究。透過X光繞射(XRD)、氣體吸附法(BET)量測電極材料之晶體結構以及表面積。使用循環伏安法(CV)、恆電流充放電、電化學穩定性測試及電化學交流阻抗(EIS),測量單電極及電容器的電化學性質。
    將Li3VO4以電位窗口0.5 ~ 2.0 V預鋰化,將預鋰化至最終電位0.5 V與預鋰化至最終電位2.0 V,再將Li3VO4負極組裝成的鋰離子混合式電容器的比較,可知預鋰化至最終電0.5 V的電位基準線較預鋰化至最終電2 V更接近Li3VO4開始氧化還原的電位1.35 V,可以增加比電容值,因此在電容器的組裝前Li3VO4負極都經過此預鋰化步驟,並且預鋰化至最終電0.5 V。
    推估AC / Li3VO4的最佳重量比例介於2~2.5間,所以我們選用四種AC / Li3VO4重量比例(0.5 / 1、1 / 1、2 / 1、3 / 1)作為比較,並得知AC / Li3VO4重量比例為2 / 1有接近理想電容器的放電曲線,在電位窗口3.5 V,當放電電流密度為0.05 A g-1時,得到最大能量密度 49.1 Wh kg-1,比電容值為34.8 F g-1。
    循環穩定性測試以AC / Li3VO4重量比例為2 / 1,電位窗口為3.5 V,電流大小為0.2 A g-1,在充放電250圈時電容保留率為78 %,庫倫效率維持在98%以上;在voltage hold測試以電位窗口為3.5 V,電流大小為0.2 A g-1,並為持在高電壓3.5 V共100小時,在第100小時後電容保留率為80 %。


    In this study, we implement a test cell of parallel plate configuration, and study the hybrid capacitor with Li3VO4 negative electrode and activated carbon positive electrode. The electrode and capacitor properties are measured with cyclic voltammetry (CV), impedance spectroscopy, galvanostatic charge/discharge experiments for both long-term and short-term measurements. The phase of Li3VO4 is analyzed with X-ray diffraction, and the surface area analysis of AC is performed with nitrogen adsorption.
    As the negative electrode, Li3VO4 crystal must be prelithiated before its assembly. And we find that the end potential of prelithiation process, 0.5 or 2.0 V vs. Li/Li+, has subtle effect on the baseline potential of the hybrid capacitor. When the end potential of prelithiation is 0.5 V, the baseline potential comes near the 1.35 V plateau of Li3VO4 crystal and the voltage window shall be exploited more effectively. On the other hand, when the end potential of prelithiation is 2.0 V, a fraction of the voltage window is wasted on the less capacitive region of Li3VO4 crystal, resulting in a smaller cell capacitance.
    Based on the measured capacities of two electrodes, we estimate the maximum cell capacitance is obtained by assembling with the AC: Li3VO4 mass ratio between 2.0 ~ 2.5. Hence, we compare the charge/discharge performance of four cells with the AC: Li3VO4 mass ratio, 0.5:1, 1:1, 2:1, 3:1. Indeed, the measurments indicate the charge/discharge curves of 2:1 ratio approach those of the ideal capacitor. The highest energy density being measured is 49.1 Wh kg-1 at 0.05 A g-1 in the voltage window 3.5 V. The cell capacitance is equal to 34.8 F g-1.
    In the cycle stability test, we measure the capacitor stability of 2:1 ratio in the 3.5 V voltage window. The capacitance retention is 78 % at the end of 250 galvanostatic charge/discharge cycles, with the coulomb efficiency 98%. Another voltage hold test shows that after 100 h hold at 3.5 V, the capacitance retains 80% of its original value.

    摘要 I ABSTRACT III 目錄 III 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻回顧與理論基礎 5 2.1 電化學電容器 5 2.2 電雙層電容器 7 2.3 擬電容器 8 2.4 鋰離子混合式電容器 9 2.4.1 鋰離子混和式電容器正極材料 12 2.4.2 鋰離子混合式電容器負極材料 13 第三章 實驗方法與步驟 17 3.1 實驗藥品耗材與儀器設備 17 3.1.1 實驗藥品及耗材 17 3.1.2 分析儀器 21 3.2 實驗流程 22 3.2.1 負極材料合成 22 3.2.2 正極漿料製備 23 3.2.3 負極漿料製備 24 3.2.4 正、負極電極製備 25 3.2.5 Electrochemical test cell組裝 26 3.2.6 電化學量測流程 26 3.3 實驗方法 27 3.4 電極材料鑑定與分析 32 3.4.1 X光繞射分析 32 3.4.2 比表面積分析 32 3.4.3 電化學量測 34 3.4.4 電化學計算 38 第四章 結果與討論 40 4.1 電極材料測試 40 4.1.1 活性碳正極材料 40 4.1.1.1 比表面積與微孔徑分析 40 4.1.1.2 循環伏安法分析 47 4.1.2 Li3VO4負極材料 52 4.1.2.1 X光繞射儀分析 52 4.1.2.2 循環伏安法分析 54 4.1.2.3 恆電流充放電特性分析 55 4.1.2.4 充放電五圈後XDR分析 56 4.2 鋰離子混合電容器測試 59 4.2.1 預鋰化(pre-lithiation)程序對鋰離子混合式電容器的影響 59 4.2.2 四種AC / Li3VO4重量比例鋰離子混合式電容器分析 62 4.2.2.1 AC / Li3VO4重量比例電容器理論電容量計算 62 4.2.2.2 恆電流充放電分析 66 4.2.2.3 正負極各別電位分析 73 4.2.2.4 放電特性分析 80 4.2.2.5 功率損失分析 82 4.2.3 電位窗口下限之影響 84 4.2.3.1 放電特性分析 85 4.2.3.2 功率損失分析 87 4.2.4 鋰離子混合式電容器穩定性測試 89 4.2.5 鋰離子混合式電容器電化學交流阻抗分析 91 第五章 結論 93 參考文獻 95 附錄一 98 附錄二 99

    [1] P. Sharma, T.S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management , Vol. 51, pp. 2901-2912 (2010)
    [2] S. L.Candelari, Y. Shaob, W. Zhou, X. Lib, J. Xiao, J.G. Zhang, Y. Wang, J. Liu, J. Li, G. Cao, “Nanostructured carbon for energy storage and conversion”, Nano Energy, Vol. 1, pp. 195-220 (2012)
    [3] J.J. Yanga, C.H. Choia, H.B. Seoa, H.J. Kimb, S.G. Parka, “Voltage characteristics and capacitance balancing for Li4Ti5O12/activated carbon hybrid capacitors”, Electrochimica Acta, Vol. 86, pp. 277- 281 (2012)
    [4] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, The Royal Society of Chemistry, Vol. 41, pp. 797-828 (2012)
    [5] G. Yu, X. Xie, L. Pand, Z. Baod, Y. Cui, “Hybrid nanostructured materials for high-performance electrochemical capacitors”, Nano Energy, Vol. 2, pp. 213-234 (2013)
    [6] P. Kurzweil, “Electrochemical Hybrid Capacitors”, University of Applied Sciences, pp. 658-664 (2009)
    [7] 鄭宗敏, 張鵬, 閻興斌, “鋰離子混合超級電容器電極材料研究進展”, 《中國科學》雜誌社, 第58卷, 第31期, pp. 3115-3123 (2013)
    [8]J. Ni, L. Yang, H. Wang, L. Gao, “A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification”, Journal of Solid State Electrochemistry , Vol. 16, pp. 2791-2796 (2012)
    [9]C. Decaux, G. Lota, E. Raymundo-Pi˜nero, E. Frackowiak, F. Beguin, “Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte”, Electrochimica Acta , Vol. 86 282-286 (2012)

    [10] L. Wei, G. Yushin, “Nanostructured activated carbons from natural precursors for electrical double layer capacitors”, Nano Energy, Vol. 1, pp. 552-565 (2012)
    [11] S.L.Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.G. Zhang, Y. Wang, J. Liub, J. Li, G. Cao, “Nanostructured carbon for energy storage and conversion”, Nano Energy, Vol. 1, pp. 195-220 (2012)
    [12] M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, “Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries”, American Chemical Society, Vol. 113(7), pp. 5364-5457 (2013)
    [13] N. S. Choi, J. S. Kim, R. Z. Yin, S. S. Kim, “Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery”, Materials Chemistry and Physics, Vol. 116, pp. 603-606 (2009)
    [14] J. H. Song, H. J. Park, K. J. Kim, Y. N. Jo, J. S. Kim, Y. U. Jeong, Y. J. Kim, “Electrochemical characteristics of lithium vanadate, Li1+xVO2, new anode materials for lithium ion batteries”, Journal of Power Sources, Vol. 195, pp. 6157-6161 (2010)
    [15] S. Ni, X. Lv, J. Ma, X. Yang, L. Zhang, “Electrochemical characteristics of lithium vanadate, Li3VO4 as a new sort of anode material for Li-ion batteries”, Journal of Power Sources, Vol. 248, pp. 122-129 (2014)
    [16] W. T. Kim, Y. U. Jeong, Y. J. Lee, Y. J. Kim, J. H. Song, “Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries”, Journal of Power Sources, Vol. 244, pp. 557-560 (2013)
    [17]J. J. Yang, C. H. Choi, H. B. Seo, H. J. Kim, S. G. Park, “Voltage characteristics and capacitance balancing for Li4Ti5O12/activated carbon hybrid capacitors ” , Electrochimica Acta, Vol. 86, pp. 277-281 (2012)
    [18] Y. Tao, D. Yi, J. Li, “Electrochemical formation of crystalline Li3VO4/Li4SiO4 solid solutions film”, Solid State Ionics, Vol. 179, pp. 2396-2398 (2008)
    [19]X. Song, M. Jia, R. Chen, “Synthesis of Li3VO4 by the citrate sol-gel method and its ionic conductivity”, Journal of Materials Processing Technology, Vol. 120, pp. 21-25 (2002)
    [20] S. T. Myung, Y. Hitoshia, Y. K. Sun, “Electrochemical behavior and passivation of current collectors in lithium-ion batteries”, Journal of Materials Chemistry, Vol. 21, pp. 9891-9911 (2011)
    [21] I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G. T. Kim, S. Passerini, “Enabling aqueous binders for lithium battery cathodes e Carbon coating of aluminum current collector”, Journal of Power Sources, Vol. 248, pp. 1000-1006 (2014)
    [22]S. Unauer, P. H. Emmett, E. Ller, “Adsorption of Gases in Multimolecular Layers”, Organic Spnthezes, Vol. 1, pp. 299-319 (1932)
    [23] S. R. Sivakkumar, A. G. Pandolfo, “Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode”, Electrochimica Acta, Vol. 65, pp. 280-287 (2012)
    [24] P. W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kotz, A. Wokaun, “Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages”, Electrochimica Acta, Vol. 55, pp. 4412-4420 (2010)
    [25] D. Weingarth, H. Noh, A. Foelske-Schmitz, A. Wokaun, R. Kotz, “A reliable determination method of stability limits for electrochemical double layer capacitors”, Electrochimica Acta, Vol. 103, pp. 119-124 (2013)
    [26] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, International Union of Pure and Applied Chemistry, vol. 57, pp. 603-619 (1985)
    [27] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. Ramsay, K. S. W. Sing, K. K. Unger, “Recommendations for the characterization of porous solids”, International Union of Pure and Applied Chemistry, vol. 66, pp. 1739-1758 (1994)
    [28] I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G. T. Kim, S. Passerini, “Enabling aqueous binders for lithium battery cathodes - Carbon coating of aluminum current collector”, Journal of Power Sources, Vol. 248, pp. 1000-1006 (2014)

    無法下載圖示 全文公開日期 2019/07/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE