簡易檢索 / 詳目顯示

研究生: 吳怡潔
YI-CHIEH WU
論文名稱: 以直流濺鍍法沉積鉬薄膜於自組裝單分子膜修飾的玻璃基板之研究
Study the Fabrication of Molybdenum Thin Films on Self-Assembled Monolayer Modified Glass Substrate by DC Magnetron Sputtering
指導教授: 戴龑
Yian Tai
口試委員: 陶雨台
Yu-Tai Tao
蔡大翔
Dah-Shyang Tsai
王澤元
Olivier Wang
楊志仁
Clement Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 119
中文關鍵詞: 直流濺鍍自組裝單分子膜
外文關鍵詞: DC sputter, Molybdenum, Self-Assembled Monolayer
相關次數: 點閱:353下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉬在硒化銅銦鎵或銅鋅錫硫這類太陽能電池中扮演著電極的角色。若在高瓦數,高溫製程下,可使鉬薄膜有較低的電阻極好的結晶度,但卻需消耗較高的能量,且不適用於軟性基版。本研究利用直流電漿濺鍍沉積鉬薄膜於自組裝單分子層薄膜(self-assembled monolayer, SAM)修飾後的鈉玻璃基板。首先,我們於未修飾玻璃基板上沉積鉬薄膜,找到最佳參數,再藉由成長自組裝單分子薄膜改質鈉玻璃基板,使其能獲得較良好的電性及結晶度。從鉬薄膜成長發現,尾端基團硫醇基(-SH)和羧基(-COOH),與金屬有較佳的化學鍵結,可以增加載子遷移率。此外,藉由調控帶有矽烷基和羧基的自組裝單分子薄膜濃度,觀察載子遷移率的變化。最後,在不同比例的CF3-SAM與COOH-SAM混合下,可調控載子遷移率與載子濃度,於低溫製成下得到電性良好之鉬薄膜。


    In general, molybdenum thin film can be used as an electrode in CIGS or CZTS solar cells device. High power and high temperature condition is conducive to better crystallinity and resistivity, but it required numbers of energy and is not suit for flexible substrate. In this work, we studied the deposition of molybdenum thin film with DC magnetron sputter on soda lime glass substrate modified by self-assembled monolayer (SAM). First, we sputtered molybdenum on soda lime glass substrate which was not modified to find the optimization parameters. Basing on these parameters, we use SAMs to modify the soda lime glass substrate to get better crystallinity and lower resistivity of molybdenum thin films. Sputtering the molybdenum thin films at room temperature on soda lime glass substrate modified by –SH and -COOH SAMs can increase the mobility because of chemical bonding between molybdenum and SAMs. In order to observe the changing of the carrier mobility of molybdenum thin films, we control the concentration of –SH and –COOH SAMs. At last, the mobility and carrier concentration could be adjusted by changing the ratio of mixing COOH- and CF3- SAMs.

    中文摘要… ………………………………………………………………I Abstract… …………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………….………………….…IX 表目錄 ………………………………………..……………….……XVI 名詞縮寫及代號表 ……………………………………….……………XIX 壹、緒論 ……………………………………………………….…….…..1 1-1 前言………………………………………………….………......1 1-2 研究目的…………………………………………….….. ……..2 貳、相關理論 ………………………………………………………….….4 2-1 自組裝單分子層薄膜(Self-assembled monolayer,SAM)..........4 2-1.1 自組裝單分子層薄膜簡介 ……………………………4 2-2 鉬(Molybdenum, Mo)電極之簡介………………….…............7 2-3 物理氣相沉積(PVD)之方法…………………….………..…...8 2-3.1 電漿之原理 ……………………………………………8 2-3.2 濺鍍之原理 …………………………………………..10 2-3.3 直流濺鍍(DC sputter) ………………………………..12 2-3.4 射頻濺鍍(RF sputter) ………………………………...13 2-3.5 熱蒸鍍(Thermal evaporation) ………………………..14 2-3.6 電子束蒸鍍(E-beam evaporation) ……………………15 2-4 薄膜成長機制…………..…………………………………... 16 参、實驗方法與步驟 ……………………………………………………21 3-1 自組裝單分子薄膜製備……………………………….… ....21 3-1.1 實驗藥品及耗材 ……………………………………..23 3-1.2 玻璃基板清洗程序 …………………………………..23 3-1.3 沉積鉬薄膜前之自組裝單分子層薄膜的製備 ……..23 3-2 以DC-sputtering成長Mo…………………………………...24 3-2.1 實驗氣體及耗材…………………………………..…24 3-2.2 DC-sputtering實驗裝置圖 …………………………..25 3-2.3 DC-sputtering沉積Mo於已利用SAM修飾過後的玻璃基板………………………….……………………..25 3-3 實驗流程…………………………………...…………...….… 26 3-4 樣品分析量測儀器簡介……………………….……..……. 27 3-4.1 接觸角測量儀 (Contact angle)…………………..….. 27 3-4.2 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Micro- scope) ………………………………………..27 3-4.3 小角度X-ray繞射儀(Grazing X-ray Diffraction) ….28 3-4.4 霍爾效應量測系統(Hall effect measurement system) …………………………………………………….…30 3-4.5 X射線光電子能譜化學分析儀 (X-ray photoelectron spectrometer) ………………………………………………….33 肆、結果與討論…………………..…………….………………………..35 4-1 在不同條件下於未修飾過之玻璃基板上沉積Mo薄膜….35 4-1.1 室溫下調控不同瓦數及流量於未修飾過之玻璃基板上沉積Mo薄膜之表面型態及電性分析…..….…..35 4-1.2 不同溫度下於未修飾過之玻璃基板上沉積 Mo薄膜之分析……..……………………………………..….44 4-2 自組裝單分子層薄膜之成長與分析不同官能基自組裝單分子層薄膜之分析……….…...…………………………..52 4-2.1 自組裝單分子薄膜SH-SAM之分析……..………52 4-2.1.1 使用不同濃度SH-SAM成長於玻璃基板上…………………………………...……..52 4-2.2 自組裝單分子薄膜COOH-SAM之分析 …………...54 4-2.2.1 使用不同濃度COOH-SAM成長於玻璃基板上…………….....…………………………..54 4-2.3 自組裝單分子薄膜NH2-SAM之分析 ……………...58 4-2.4 自組裝單分子薄膜CH3-SAM之分析 ………………61 4-2.5 自組裝單分子薄膜CF3-SAM之分析 ………...…….63 4-2.6 自組裝單分子薄膜TDFOS-SAM之分析 ………..…65 4-2.7 自組裝單分子薄膜3CN-SAM之分析 ……………...67 4-3 自組裝單分子薄膜修飾過後的玻璃基板所沉積之Mo薄膜分析……………………………………………………..………69 4-3.1 室溫下使用自組裝單分子薄膜修飾玻璃基板所沉積Mo薄膜結構及表面型態分析 ………………………69 4-3.2 室溫下使用自組裝單分子薄膜修飾玻璃基板所沉積Mo薄膜電性分析……………………………………78 4-3.3 對室溫下使用自組裝單分子薄膜修飾玻璃基板之附著力分析..………………………………………..…..82 4-4 使用自組裝單分子薄膜濃度變化修飾之玻璃基板所沉積Mo薄膜之分析………………………………………………..…83 4-4.1 室溫下使用SH-SAM與COOH-SAM濃度變化修飾玻璃基板所沉積Mo薄膜之分析 ……………………...83 4-4.2 室溫下使用NaOH與自組裝單分子薄膜修飾玻璃基 板所沉積Mo薄膜之分析…………………………...92 4-4.3 室溫下使用含有尾端基-COOH的自組裝單分子薄膜修飾玻璃基板之分析……………………….…..…..105 4-5 利用不同比例法成長混合自組裝單分子薄膜之分析…..112 4-5.1 Mo薄膜沉積於不同比例混合自組裝單分子薄膜修飾玻璃基板之分析………………………..….…..112 伍、結論與未來展望 …………………………..……………………….114 參考文獻 ……………………………………………………………….116

    1. Frank Kreith,D.Yogi Goswami,Handbook of Energy Efficiency and Renewable Energy,CRC,2007. (2007).
    2. Current Solar Module Efficiency Nowhere Near Its Potential, Especially Thin-Film Solar & CPV (Chart). CleanTechnica at <http://cleantechnica.com/2013/04/01/current-solar-module-efficiency-nowhere-near-its-potential-especially-thin-film-solar-cpv-chart/>
    3. Valderrama, R. C., Miranda-Hernandez, M., Sebastian, P. J. & Ocampo, A. L., Electrodeposition of indium onto Mo/Cu for the deposition of Cu(In,Ga)Se2 thin films., Electrochimica Acta 53, 3714–3721 (2008).
    4. Faraj, M. G., Ibrahim, K., Eisa, M. H., Ali, M. K. M. & Azhari, F., Investigation on Molybdenum Thin Films Deposited by DC-Sputtering on Polyethylene Terephthalate Substrate., Int. J. Polym. Mater., 59, 622–627 (2010).
    5. J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo and George M. Whitesides, Chem. Rev. , 2005, 105, 1103.
    6. Ulman. A., An Introduction to Ultra-thin Organic Films, Academic Press, San Diego( 1991).
    7. Ulman. A., Chem. Rev. , 1996, 96, 1533.
    8. Saghar Khodabakhsh, Brett M. Sanderson, Jenny Nelson, and Tim S., J. Adv. Funct. Mater. , 2006, 16, 95.
    9. Jong Soo Kim, Jong Hwan Park, and Ji Hwang Lee, Applied Physics Letters , 2007, 91, 112111.
    10. Molybdenum. Wikipedia Free Encycl. (2013). at <http://en.wikipedia.org/w/index.php?title=Molybdenum&oldid=563102379>
    11. Pethe, S. A., Takahashi, E., Kaul, A. & Dhere, N. G., Effect of sputtering process parameters on film properties of molybdenum back contact., Sol. Energy Mater. Sol. Cells 100, 1–5 (2012).
    12. 高正雄, 超LSI時代-電漿化學, (199AD).
    13. Lin, Y.-C., Yen, W. T. & Wang, L. Q. ,Effect of substrate temperature on the characterization of molybdenum contacts deposited by DC magnetron sputtering., Chin. J. Phys. 50, 82–88,2012.
    14. 李玉華. 透明導電玻璃及其應用,1980.
    15. Mickelsen, R. A. & Chen, W. S. High photocurrent polycrystalline thin‐film CdS/CuInSe2 solar cella., Appl. Phys. Lett. ,36, 371–373 ,1980.
    16. 周安琪譯,薄膜材料,徐氏基金會,1975.
    17. M. Ohring, The Materials Science of Thin Film, Academic Press, London, 1992.
    18. 李道惟,以噴霧熱解法成長p-type氧化鋅薄膜之研究,國立台北科技大學,2006.
    19. J. A. Thornton, J. Vac. Sci. Technol., 1974, 11, 4666.
    20. M. Konuma, Alpha Science International Ltd.
    21. J. A. Thornton, J. Vac. Sci. Technol. ,1974, 11, 666.
    22. John F. Moulder, William F. Stickle, Peter E. Sobpl, Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, USA, 1995.
    23. B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, 3rd, Prentice Hall, New Jersey, 2001.
    24. J. Park. H. Lee, Mater. Sci. and Eng. C .,2004, 24, 311.
    25. 施敏,半導體元件物理與製作技術,第二版, 國立交通大學出版 社,1980.
    26. http://four-point-probes.com/ecopia.html.
    27. 劉智生, 洪儒生, 化工技術 2007, 15(3) , 176.
    28. http://www-o.ntust.edu.tw/~ch/ESCA2002/ESCA2008.html.
    29. Kashyout, A. E.-H. B., Soliman, H. M. A., Gabal, H. A., Ibrahim, P. A. & Fathy, M. Preparation and characterization of DC sputtered molybdenum thin films., Alex. Eng. J. 50, 57–63 (2011).
    30. Hin-Lap Yip, Steven K. Hau, Nam Seob Baek, Hong Ma, Alex K.-Y. Jen, Adv. Mater., 20, 2376(2008).
    31. M. GRUNZE, W. ECK,Landolt-Bornstein - Group III Condensed Matter, Springer-Verlag (2006).
    32. Simon Flink, Frank C. J. M. van Veggel, David N. Reinhoudt, J. Phys. Org. Chem., 2001, 14, 407.
    33. J. Park. H. Lee, Mater. Sci. and Eng. C.,2004, 24, 311.
    34. 張亘鈞,沉積金屬氧化物於自組裝單分子薄膜修飾之玻璃基板,國立台灣科技大學,2010.
    35. J. L. Lenhart, and Wen-li Wu, Langmuir, 2003, 19, 4863.
    36. Hiroyuki Sugimura, Atsushi Hozumi, Tetsuya Kameyama and Osamu Takai, Surf. and Interface Anal., 2002, 34, 550.
    37. Hiroyuki Sugimura, Atsushi Hozumi, Tetsuya Kameyama and Osamu Takai, Surf. and Interface Anal., 2002, 34, 550.
    38. 何雨璇,沉積氧化鋅鋁薄膜於自組裝單分子薄膜修飾之玻璃基板之研究,國立台灣科技大學,2011.
    39. H. L. Yip, S. K. Hau, N.S.Beob, H. Ma, A. K. Y. Jen, Adv. Mater. 2008, 20, 2376.
    40. 張仕翰,矽薄膜沉積於自組裝單分子薄膜改質後之玻璃,2009.
    41. Singh, J. & Whitten, J. E, Adsorption of 3-Mercaptopropyltrimethoxysilane on Silicon Oxide Surfaces and Adsorbate Interaction with Thermally Deposited Gold, J. Phys. Chem., C 10, 1–13 (2008).
    42. Yoon, J.-H. et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells 95, 2959–2964 (2011).

    QR CODE