簡易檢索 / 詳目顯示

研究生: 楊晏昇
Yen-Sheng Yang
論文名稱: 三次元體積量測機之開發
Development of the 3D Volume Calculating Device
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 邱士軒
Shih-Hsuan Chiu
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 47
中文關鍵詞: 雷射測距元件三次元體積量測機pan-tilt機構高畫質攝影機
外文關鍵詞: 3D volume calculating device, laser distance measurement sensor, pan-tilt unit, HD camera
相關次數: 點閱:158下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於整合市面上既有之相關機構已研發具有工業用途的三次元體積量測機,並著重其體積量測功能於量測一般工廠內的大型料件或鋼鐵廢材等之目標物。考量到本研究之三次元體積量測機於工廠內特殊的工作環境限制,本研究的機械架構便以強調符合工業利益為主,並以輕便可攜、可折疊、低成本、易控制為概念來做研究與發展。

    藉由三次元掃描技術結合雷射測距元件(LDM301)與精確且能即時定位的pan-tilt機構(PTU-D46-17),輔以專為本研究所開發之控制程式與體積演算法對其作有系統的管理與運算,並將高畫質攝影機所拍攝之色彩資訊做像素擷取,本研究得以達成三次元體積量測機對其目標物量測並求取其體積之目的。


    The purpose of this development is to create a 3D volume calculating device for the industrial use to acquire the huge volume of the ultra large-sized scrap or the highly piled-up discarded metal material in the factory. Considering the specific working conditions in this research, the design concept of the system configuration hence focuses on the industrial advantages which include those of a small and portable volume, a detachable mechanical structure, a relatively lower cost and a more apt way of control.

    By combining the 3D scanning technologies with the following components of the laser distance measurement sensor (LDM301) as well as the accurate real-time positioning pan-tilt unit (PTU-D46-17), coupled with the proper control and the specific volume algorithm from the computer programming language along with the extraction of the color information from the Full HD (1080p) camera, the main objective to calculate the volume of a certain target shall therefore be accomplished in this study.

    摘要 I Abstract II Acknowledgement IIII Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Overview of the 3D Scanner and the 3D Scanning Technology 1 1.2 The Time-of-flight Method and the LIDAR Technology 2 1.2.1 The 3D Data Acquisition & Object Reconstruction 2 1.2.2 The 3D Graph 3 1.3 Research Objective 3 Chapter 2 System Configuration 5 2.1 Specifications of the major components 5 2.1.1 The HD camera (Logitech HD Pro Webcam C910) 6 2.1.2 The laser distance measurement sensor (ASTECH LDM301) 7 2.1.3 The pan-tilt unit (FLIR PTU-D46-17) 9 2.1.4 The rapid connect system (Manfrotto 410) 10 2.1.5 The tripod (Manfrotto 190XB) 11 2.1.6 The power box 12 2.2 The relevant computer languages and the software 12 2.3 Actuation of the 3D volume calculating device 13 Chapter 3 The 3D Data Acquisition and the 3D Graph 15 3.1 The scanning method 15 3.2 The transformation of the data format in terms of the coordinates 15 Chapter 4 The Colorization of the 3D Graph 18 4.1 The pixel attachment to the 3D graph 18 4.2 The aspect ratio of the HD camera 19 4.3 The schematic diagrams of the pixel attachment 21 4.4 The effective measuring range of the LDM301 23 4.5 The test experiment 24 Chapter 5 The Noise Elimination of the 3D Graph 25 5.1 The noise of the LDM301 25 5.2 The noise in the field experiment 25 5.3 The noise elimination 26 Chapter 6 The Volume Calculation of the Target 28 6.1 The concept of the volume calculation 28 6.2 The algorithm of the volume calculation 29 6.2.1 The application of the trapezoidal rule 29 6.2.2 The average area of the trapezoids in the neighboring layers 31 6.2.3 The flow chart of the volume calculation 32 6.3 The demonstration of the volume calculation 32 6.3.1 The demonstration of the algorithm of the volume calculation 32 6.3.2 The demonstration of the mouse-clicking of the 3D graph 33 Chapter 7 The Field Experiment 37 7.1 The ideal field experiment 37 7.2 The field experimental results 40 Chapter 8 The Conclusions and Future Prospect 44 8.1 The Conclusions 44 8.2 Future prospect 44 Reference 46

    [1] L. Kovacs, A. Zimmermann, G. Brockmann, H. Baurecht, K. Schwenzer-Zimmerer, N.A. Papadopulos, M.A. Papadopoulos, R. Sader, E. Biemer, H.F. Zeilhofer. Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner. IEEE Engineering in Medicine and Biology Society, 2006.
    [2] J. Tian, M. Gao, K. Li. 3D Data Acquisition and Visual Emulation Research Based on Wireless Sensor Array. IEEE International Conference on Information Acquisition, 2006.
    [3] F. Bernardini and H. Rushmeier, The 3D Model Acquisition Pipeline, Computer Graphics Forum, 2002.
    [4] http://www.faro.com/focus/uk
    [5] M. Zhang, W. Zhao. Discuss the modeling technique of 3D animated characters under three-dimensional visual angle. International Conference on Electronic and Mechanical Engineering and Information Technology, 2011.
    [6] L. Burak Kara, K. Shimada. Sketch-Based 3D-Shape Creation for Industrial Styling Design. IEEE Computer Society, 2007.
    [7] G. Li, F. Gao, Z. Wang. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics. Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, 2011.
    [8] K. Ikeuchi, A. Nakazawa, K. Hasegawa, T. Ohishi. The great buddha project: modeling cultural heritage for VR systems through observation. The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003.
    [9] J. Kostamovaara, M. Karras. Distance determination by the gamma-ray time-of-flight method. IEEE Transactions on Instrumentation and Measurement, 1992.
    [10] U. Even, B. Dick. Optimization of a one-dimensional time-of-flight mass spectrometer. Review of Scientific Instruments, 2000.
    [11] K. Maru, Y. Fujii. Laser Doppler Velocimetry for Two-Dimensional Directional Discrimination by Monitoring Scattered Beams in Different Directions. IEEE Sensors Journal, 2011.
    [12] G.G. Gimmestad, L.L. West. Lidar education at Georgia Tech. Geoscience and Remote Sensing Symposium, 2007.
    [13] http://www.leica-geosystems.com/en/index.htm
    [14] R. Ravas, L. Syrova. Automated reconstruction of 3D object. MECHATRONIKA, 13th International Symposium, 2010
    [15] M. Andreetto, N. Brusco, G.M. Cortelazzo. Automatic 3D modeling of textured cultural heritage objects. IEEE Transactions on Image Processing, 2004.
    [16] P. Thevenaz, M. Unser. Precision isosurface rendering of 3D image data. IEEE Transactions on Image Processing, 2003.
    [17] http://www.logitech.com/en-us/webcam-communications/webcams/devices/hd-pro-webcam-c910
    [18] http://www.astech.de/english/ldm301a_e.html
    [19] http://www.flir.com/mcs/products/ptu-d46/ptu-d46-17/index.cfm
    [20] http://www.manfrotto.com/410-junior-geared-head
    [21] http://www.manfrotto.com/aluminium-tripod-black-without-head

    QR CODE