簡易檢索 / 詳目顯示

研究生: 林宏澤
Hong-Ze Lin
論文名稱: 含苯並二噻吩單元之共軛高分子的合成、分析及其在太陽能電池之應用
Synthesis and Characterization of Benzodithiophene Derived Conjugated Polymers for Solar Cells
指導教授: 陳志堅
Jyh-Chien Chen
王立義
Leeyih Wang
口試委員: 陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 182
中文關鍵詞: 苯並二噻共軛高分子合成太陽能電池
外文關鍵詞: Benzodithiophene, Conjugated Polymers, Solar Cells
相關次數: 點閱:211下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究設計是將具噻吩基 (Thienyl) 作為共軛側鏈之benzo[1,2-b:4,5-b']dithiophene (BDT) 為推電子單元 (electron donating group) 分別與thieno[3,4-c]pyrroledione (TPD)、dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT)、benzo[c]-1,2,5- thiadiazole (BT) 及benzo[c]cinnoline (BC) 四種拉電子單元 (electron-withdrawing group),以Stille polycondensation進行共聚,合成一系列新穎二維共軛高分子,NAP01、NAP03、NAP04、NAP05,比較缺電子單元的差異,並對其光學、電化學及結晶性質作分析與討論。接著又將噻吩共軛結構導入NAP01及NAP05主鏈中做為隔離物 (space group),合成了NAP02及NAP06,比較導入噻吩共軛結構對其各項性質之影響。


    This study focused on developing novel low-bandgap organic materials by the Stille polycondensation of an electron-rich monomer, benzo[1,2-b:4,5-b']dithiophene (BDT), with an electron-deficient monomer, thieno[3,4-c]pyrroledione (TPD), benzo[c]-1,2,5-thiadiazole (BT), dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) or benzo[c]cinnoline (BC), with or without two thiophene rings as a conjugated spacer in the backbone, producing six conjugated polymers, namely NAP01~06, in which two 2,3-didecylthiophene moieties were bonded to the BDT unit to increase their solubility as well as molecular weight. Both intermediates and final products were structurally characterized by NMR spectroscopy (1H NMR, 13C NMR) and mass spectrometry. Gel permeation chromatography (GPC), X-ray diffraction (XRD) and ultraviolet–visible spectrometer (UV/Vis) were applied to determine these polymers’ molecular weight characteristics, crystallinity and optical properties, respectively. Moreover, their electronic properties were then investigated by cyclic voltammetry (CV) and photoelectron spectroscopy in air (PESA).

    致謝 IV 摘要 V Abstract VII 目錄 VIII 圖目錄 XI 表目錄 XV 單體合成路徑圖 XVII 共軛高分子合成路徑圖 XXI 第一章、緒論 1 1.1 前言 1 1.2 太陽能電池種類 2 1.3 高分子太陽能電池發展簡介 3 1.4 有機太陽能電池工作原理 6 1.5 太陽能電池元件參數 8 1.6 文獻回顧 11 1.6.1 共軛高分子 11 1.6.2 含benzodithiophene單元之共軛高分子 12 1.6.3 二維共軛高分子 15 1.6.4 主鏈導入隔離物 (Spacer group) 17 1.6.5 D-A共聚物之缺電子單元選用 19 1.7 實驗動機與設計 22 第二章、實驗 24 2.1化學試劑 24 2.2 實驗設備及儀器 27 2.2.1 真空系統 (high vacuum system) 27 2.2.2 手套箱 (glove box) 27 2.2.3 微波反應器 (Microwave Reactor) 27 2.2.4 核磁共振光譜儀 (Nuclear Magnetic Resonance spectrometer;NMR) 28 2.2.5 質譜儀 (Mass Spectrometer) 28 2.2.6 X光譜繞射儀 (X-ray Diffractometer;XRD) 28 2.2.7 二維X光繞射儀(2D X-ray Diffractometer) 29 2.2.8 紫外光可見光吸收光譜儀 (Ultraviolet–Visible Spectrometer;UV/vis) 29 2.2.9 凝膠滲透層析 (Gel Permeation Chromatography;GPC) 30 2.2.10 電化學循環伏安法 (cyclic voltammtry;CV) 31 2.2.11 光電子光譜儀 (photoelectron spectroscopy in air;PESA) 31 2.3 單體合成 32 2.3.1 3-Decylthiophene (1) 的合成 32 2.3.2 2-Bromo-3-decylthiophene (2) 的合成 33 2.3.3 2,3-Didecylthiophene (3) 的合成 34 2.3.4 3-Thiophenecarbonitrile (4) 的合成 35 2.3.5 3-Thiophenecarboxylic acid (5) 的合成 36 2.3.6 N,N-Diethylthiophene-3-carboxamide (6) 的合成 37 2.3.7 Benzo[1,2-b:4,5-b']dithiophene-4,8-dione (7) 的合成 38 2.3.8 4,8-Bis(4,5-didecylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (8) 的合成 39 2.3.9 (4,8-Bis(4,5-didecylthiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (9) 的合成 40 2.3.10 4,6-Dichlorothieno[3,4-c]furan-1,3-dione (10) 的合成 41 2.3.11 1,3-Dichloro-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (11) 的合成 42 2.3.12 4,6-Dibromothieno[3,4-c]furan-1,3-dione (12) 的合成 43 2.3.13 1,3-Dibromo-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (13) 的合成 44 2.3.14 Trimethyl(thiophen-2-yl)stannane (14) 的合成 45 2.3.15 5-Octyl-1,3-di(thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (15) 的合成 46 2.3.16 1,3-Bis(5-bromothiophen-2-yl)-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (16) 的合成 47 2.3.17 1,2-Di(thiophen-3-yl)ethane-1,2-dione (17) 的合成 48 2.3.18 Benzo[1,2-b:6,5-b']dithiophene-4,5-dione (18) 的合成 49 2.3.19 Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (19) 的合成 50 2.3.20 Ddithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (20) 的合成 51 2.3.21 5,8-Dibromodithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole (21) 的合成 52 2.3.22 4,7-Di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (22) 的合成 53 2.3.23 4,7-Bis(5-bromothiophen-2-yl)benzo[c][1,2,5]thiadiazole (23) 的合成 54 2.3.24 3-(2-Ethylhexyl)thiophene (24) 的合成 55 2.3.25 Tributyl(4-(2-ethylhexyl)thiophen-2-yl)stannane (25) 的合成 56 2.3.26 3,8-Bis(4-(2-ethylhexyl)thiophen-2-yl)benzo[c]cinnoline (26) 的合成 57 2.3.27 3,8-Bis(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)benzo[c]cinnoline (27) 的合成 58 2.4 高分子聚合 59 2.4.1 NAP01的聚合 59 2.4.2 NAP02的聚合 60 2.4.3 NAP03的聚合 61 2.4.4 NAP04的聚合 62 2.4.5 NAP05的聚合 63 2.4.6 NAP06的聚合 64 第三章、結果與討論 65 3.1 單體與高分子的合成 65 3.1.1 合成反應 65 3.1.2 單體合成討論 70 3.1.3 高分子聚合討論 75 3.2 單體與高分子結構鑑定 76 3.2.1 單體結構鑑定 76 3.2.2 高分子結構鑑定 78 3.3 共軛高分子之分子量性質 79 3.4 共軛高分子光學性質 84 3.4.1 共軛高分子溶液態、薄膜態、熱退火態吸收光譜分析 84 3.4.2 比較共軛高分子結構差異吸收光譜分析 90 3.4.3 共軛高分子溶液態吸收係數 95 3.5 共軛高分子能階分析 102 3.6 共軛高分子X光繞射圖譜分析 116 3.6.1 一維X光繞射圖譜 116 3.6.2 二維X光繞射圖譜 122 3.7 光伏特性分析 126 3.7.1 異質混摻高分子太陽能電池之光伏特性分析 126 3.7.2 共軛高分子NAP02應用於鈣鈦礦太陽能電池 (Perovskite Solar) 之光伏特分析 128 第四章、結論 129 參考文獻 131 附錄 137

    (1) http://www.moneydj.com/z/gif/GetRptGif.djgif?a=52977.
    (2) http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    (3) Coakley, K. M.; McGehee, M. D. Conjugated Polymer Photovoltaic Cells. Chemistry of Materials 2004, 16, 4533-4542.
    (4) Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Photovoltaic response in poly(p-phenylene vinylene) thin-film devices. Journal of Physics Condensed Matter 1994, 6, 1379-1394.
    (5) Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183-185.
    (6) Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Applied Physics Letters 1993, 62, 585-587.
    (7) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789-1791.
    (8) Sun, S. S. Design of a block copolymer solar cell. Solar Energy Materials and Solar Cells 2003, 79, 257-264.
    (9) Thompson, B. C.; Fréchet, J. M. J. Polymer–Fullerene Composite Solar Cells. Angewandte Chemie 2008, 47, 58-77.
    (10) David S. Ginley; David Cahen: Fundamentals of materials for energy and environmental sustainability; Cambridge university press, 2011.
    (11) Li, Y. Molecular Design of Photovoltaic Materials for Polymer Solar Cells: Toward Suitable Electronic Energy Levels and Broad Absorption. Accounts of Chemical Research 2012, 45, 723-733.
    (12) Scharber, M.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10 % Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789-794.
    (13) Street, G. B.; Clarke, T. C. Conducting Polymers: A Review of Recent Work. IBM Journal of Research and Development 1981, 25, 51-57.
    (14) McCullough, R. D.; Tristram-Nagle, S.; Williams, S. P.; Lowe, R. D.; Jayaraman, M. Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. Journal of the American Chemical Society 1993, 115, 4910-4911.
    (15) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15, 1617-1622.
    (16) Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angewandte Chemie 2003, 42, 3371-3375.
    (17) http://lain.atm.ncu.edu.tw/lain_1/POGA/12.GIF.
    (18) Shiraishi, K.; Yamamoto, T. New π-conjugated polymers constituted of dialkoxybenzodithiophene units: Synthesis and electronic properties. Synthetic Metals 2002, 130, 139-147.
    (19) Hou, J.; Park, M.-H.; Zhang, S.; Yao, Y.; Chen, L.-M.; Li, J.-H.; Yang, Y. Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b′]dithiophene. Macromolecules 2008, 41, 6012-6018.
    (20) Sista, P.; Biewer, M. C.; Stefan, M. C. Benzo[1,2-b:4,5-b′]dithiophene Building Block for the Synthesis of Semiconducting Polymers. Macromolecular rapid communications 2012, 33, 9-20.
    (21) Kang, T. E.; Kim, T.; Wang, C.; Yoo, S.; Kim, B. J. Poly(benzodithiophene) homopolymer for high-performance polymer solar cells with open-circuit voltage of near 1 V: A superior candidate to substitute for poly(3-hexylthiophene) as wide bandgap polymer. Chemistry of Materials 2015, 27, 2653-2658.
    (22) Lai, Y.; Ding, Y.; Wang, H. Structural Modification of Benzo [1,2-b:4,5-b'] dithiophene and Application in Organic Photovoltaic Materials. Progress in Chemistry 2014, 26, 1673-1689.
    (23) You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 2013, 4, 1446.
    (24) Liao, S.-H.; Jhuo, H.-J.; Yeh, P.-N.; Cheng, Y.-S.; Li, Y.-L.; Lee, Y.-H.; Sharma, S.; Chen, S.-A. Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer. Sci. Rep. 2014, 4.
    (25) Hou, J.; Yang, C.; He, C.; Li, Y. Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: A side-chain conjugated polymer with very broad absorption band. Chemical Communications 2006, 871-873.
    (26) Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y. Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. Journal of the American Chemical Society 2006, 128, 4911-4916.
    (27) Hundt, N.; Palaniappan, K.; Servello, J.; Dei, D. K.; Stefan, M. C.; Biewer, M. C. Polymers containing rigid benzodithiophene repeating unit with extended electron derealization. Organic Letters 2009, 11, 4422-4425.
    (28) Huo, L.; Hou, J.; Zhang, S.; Chen, H. Y.; Yang, Y. A Polybenzo[1,2-6:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angewandte Chemie - International Edition 2010, 49, 1500-1503.
    (29) Zhang, Z.-G.; Zhang, S.; Min, J.; Chui, C.; Zhang, J.; Zhang, M.; Li, Y. Conjugated Side-Chain Isolated Polythiophene: Synthesis and Photovoltaic Application. Macromolecules 2011, 45, 113-118.
    (30) Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y. A polythiophene derivative with octyloxyl triphenylamine-vinylene conjugated side chain: Synthesis and its applications in field-effect transistor and polymer solar cell. Synthetic Metals 2009, 159, 182-187.
    (31) Lu, K.; Fang, J.; Yan, H.; Zhu, X.; Yi, Y.; Wei, Z. A facile strategy to enhance absorption coefficient and photovoltaic performance of two-dimensional benzo[1,2-b:4,5-b′]dithiophene and thieno[3,4-c]pyrrole-4,6-dione polymers via subtle chemical structure variations. Organic Electronics 2013, 14, 2652-2661.
    (32) Cabanetos, C.; El Labban, A.; Bartelt, J. A.; Douglas, J. D.; Mateker, W. R.; Fréchet, J. M. J.; McGehee, M. D.; Beaujuge, P. M. Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene–Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance. Journal of the American Chemical Society 2013, 135, 4656-4659.
    (33) Huo, L.; Hou, J. Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polymer Chemistry 2011, 2, 2453-2461.
    (34) Wang, N.; Chen, Z.; Wei, W.; Jiang, Z. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. Journal of the American Chemical Society 2013, 135, 17060-17068.
    (35) Mei, C. Y.; Liang, L.; Zhao, F. G.; Wang, J. T.; Yu, L. F.; Li, Y. X.; Li, W. S. A family of donor-acceptor photovoltaic polymers with fused 4,7-dithienyl-2,1,3-benzothiadiazole units: Effect of structural fusion and side chains. Macromolecules 2013, 46, 7920-7931.
    (36) Chen, J.-C.; Wu, H.-C.; Chiang, C.-J.; Peng, L.-C.; Chen, T.; Xing, L.; Liu, S.-W. Investigations on the electrochemical properties of new conjugated polymers containing benzo[c]cinnoline and oxadiazole moieties. Polymer 2011, 52, 6011-6019.
    (37) Chen, J. C.; Wu, H. C.; Chiang, C. J.; Chen, T.; Xing, L. Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo[c]cinnoline moieties. Journal of Materials Chemistry C 2014, 2, 4835-4846.
    (38) Smith, M. B.; Jerry, M. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.). 2007.
    (39) Goebel, M. T.; Marvel, C. S. The oxidation of Grignard reagents. Journal of the American Chemical Society 1933, 55, 1693-1696.
    (40) Milstein, D.; Stille, J. K. A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society 1978, 100, 3636-3638.
    (41) Casado, A. L.; Espinet, P. On the Configuration Resulting from Oxidative Addition of RX to Pd(PPh3)4 and the Mechanism of the cis-to-trans Isomerization of [PdRX(PPh3)2] Complexes (R = Aryl, X = Halide). Organometallics 1998, 17, 954-959.
    (42) Casado, A. L.; Espinet, P. Mechanism of the Stille Reaction. 1. The Transmetalation Step. Coupling of R1I and R2SnBu3 Catalyzed by trans-[PdR1IL2] (R1 = C6Cl2F3; R2 = Vinyl, 4-Methoxyphenyl; L = AsPh3). Journal of the American Chemical Society 1998, 120, 8978-8985.
    (43) Espinet, P.; Echavarren, A. M. The Mechanisms of the Stille Reaction. Angewandte Chemie 2004, 43, 4704-4734.
    (44) Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction. Organic Reactions 2004.
    (45) Kim, J. G.; Jang, D. O. A convenient one-pot method for the synthesis of N-methoxy-N-methyl amides from carboxylic acids. Bulletin of the Korean Chemical Society 2010, 31, 171-173.
    (46) Keshtov, M. L.; Parashchuk, D. Y.; Kochurov, V. S.; Marochkin, D. V.; Perevalov, V. P.; Khokhlov, A. R. New conjugated copolymers based on perylenediimide as electron-acceptor materials for polymeric solar cells. Dokl Chem 2011, 440, 257-262.
    (47) Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-acceptor conjugated polymer based on naphtho[1,2- c:5,6- c ]bis[1,2,5]thiadiazole for high-performance polymer solar cells. Journal of the American Chemical Society 2011, 133, 9638-9641.
    (48) Arroyave, F. A.; Richard, C. A.; Reynolds, J. R. Efficient Synthesis of Benzo[1,2-b:6,5-b′]dithiophene-4,5-dione (BDTD) and Its Chemical Transformations into Precursors for π-Conjugated Materials. Organic Letters 2012, 14, 6138-6141.
    (49) Huang, F.; Hou, L.; Shen, H.; Jiang, J.; Wang, F.; Zhen, H.; Cao, Y. Synthesis, photophysics, and electroluminescence of high-efficiency saturated red light-emitting polyfluorene-based polyelectrolytes and their neutral precursors. Journal of Materials Chemistry 2005, 15, 2499-2507.
    (50) Kim, Y. J.; Kim, H. N.; Hwang, M. C.; Kim, Y. H.; Park, C. E. A weak donor/strong acceptor alternating copolymer for efficient bulk heterojunction solar cells. Synthetic Metals 2014, 198, 93-100.
    (51) Zhang, R.; Li, B.; Iovu, M. C.; Jeffries-El, M.; Sauvé, G.; Cooper, J.; Jia, S.; Tristram-Nagle, S.; Smilgies, D. M.; Lambeth, D. N.; McCullough, R. D.; Kowalewski, T. Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-hexylthiophene) Thin Film Field Effect Transistors. Journal of the American Chemical Society 2006, 128, 3480-3481.
    (52) Liu, C.; Wang, K.; Hu, X.; Yang, Y.; Hsu, C.-H.; Zhang, W.; Xiao, S.; Gong, X.; Cao, Y. Molecular Weight Effect on the Efficiency of Polymer Solar Cells. ACS applied materials & interfaces 2013, 5, 12163-12167.
    (53) Najari, A.; Beaupré, S.; Berrouard, P.; Zou, Y.; Pouliot, J. R.; Lepage-Pérusse, C.; Leclerc, M. Synthesis and characterization of new thieno[3,4-c]pyrrole-4,6-dione derivatives for photovoltaic applications. Advanced Functional Materials 2011, 21, 718-728.
    (54) Fu, Y.; Cha, H.; Song, S.; Lee, G. Y.; Eon Park, C.; Park, T. Low-bandgap quinoxaline-based D - A-type copolymers: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science, Part A: Polymer Chemistry 2013, 51, 372-382.
    (55) Ma, Z.; Dang, D.; Tang, Z.; Gedefaw, D.; Bergqvist, J.; Zhu, W.; Mammo, W.; Andersson, M. R.; Inganäs, O.; Zhang, F.; Wang, E. A facile method to enhance photovoltaic performance of benzodithiophene- isoindigo polymers by inserting bithiophene spacer. Advanced Energy Materials 2014, 4.
    (56) Liu, Y.; Liu, M. S.; Jen, A. K. Y. Synthesis and characterization of a novel and highly efficient light-emitting polymer. Acta Polymerica 1999, 50, 105-108.
    (57) Qu, B.; Yang, H.; Tian, D.; Liu, H.; Cong, Z.; Gao, C.; Chen, Z.; Xiao, L.; Gao, Z.; Wei, W.; Gong, Q. Synthesis of two benzo[1,2-b:3,4-b′]dithiophene-based conjugated polymers with different side chains and their applications in photovoltaic devices. Synthetic Metals 2012, 162, 2020-2026.
    (58) Hou, J.; Chen, H.-Y.; Zhang, S.; Yang, Y. Synthesis and Photovoltaic Properties of Two Benzo[1,2-b:3,4-b′]dithiophene-Based Conjugated Polymers. The Journal of Physical Chemistry C 2009, 113, 21202-21207.
    (59) Kranthiraja, K.; Gunasekar, K.; Cho, W.; Song, M.; Park, Y. G.; Lee, J. Y.; Shin, Y.; Kang, I.-N.; Kim, A.; Kim, H.; Kim, B.; Jin, S.-H. Alkoxyphenylthiophene Linked Benzodithiophene Based Medium Band Gap Polymers for Organic Photovoltaics: Efficiency Improvement upon Methanol Treatment Depends on the Planarity of Backbone. Macromolecules 2014, 47, 7060-7069.
    (60) Yao, Y.; Dong, H.; Hu, W. Ordering of conjugated polymer molecules: recent advances and perspectives. Polymer Chemistry 2013, 4, 5197-5205.
    (61) Katsuhiko Inaba, S. K., Kenichi Uehara, Akira Okada, Sanapa Lakshmi Reddy, Tamio Endo. High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire(0001) Double Heteroepitaxial Films. Advances in Materials Physics and Chemistry 2013, 3, 72-89.
    (62) Zuo, G.; Li, Z.; Zhang, M.; Guo, X.; Wu, Y.; Zhang, S.; Peng, B.; Wei, W.; Hou, J. Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry 2014, 5, 1976-1981.
    (63) Ye, L.; Zhang, S.; Huo, L.; Zhang, M.; Hou, J. Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research 2014, 47, 1595-1603.

    無法下載圖示 全文公開日期 2020/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE