簡易檢索 / 詳目顯示

研究生: 陳奕安
I-An Chen
論文名稱: 基於客製化物理引擎模擬頁寬式雷射 -光學性質影響材料之研究
Simulating Page-Wide Diode Laser Based on Customized Physics Engine-A Study of the Effect of Optical Properties on Materials
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 謝志華
林鼎晸
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 69
中文關鍵詞: 粉末床融合成型光學物理引擎PMMA碳黑
外文關鍵詞: Powder Bed Fusion, Optics, Physics Engine, PMMA, Carbon
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

積層製造在工業領域已經發展了四十年並擴展到醫療及航太領域。在台科大高速3D列印中心,有自主開發的頁寬式雷射機器(Page-wide Diode Laser),是先進粉床融合機台並且搭載超過數百個半導體雷射的機台,此機台每層只需在幾秒鐘內就能燒結A4大小的列印區域,節省列印時間並可以燒結多種材料。雖然這台機器有很多優點,但當研究者們想知道新材料的可行性,他們不得不購買未知的材料來做研究,非常浪費金錢和時間。在市面上很少有光學軟體可以產生隨機大小的粉末。此外,有些材料是低吸光度,例如:PMMA,它必須與其他高吸收率材料混合。因此,本研究旨在開發客製化軟體,涵蓋粉末輸送和光學路徑之功能。
建構軟體前需了解基本物理包括運動學與光學,首先需要將所有物理因素簡化並找出影響較小的參數並消除,並再導入到軟體裡面。
此軟體完全由C++開發並結合Bullet Physics,軟體提供研究者許多有用的功能,例如,動態碰撞、光學路徑、可視化結果、動畫等。
研究結果呈現出粉末在列印區的分布狀況,以及雷射如何穿透到粉末下方的路徑,並量化每個粉末的吸收能量。研究成果有助於提高研究者對新材料能否在機器上使用的了解。


Additive Manufacturing has been developed in industrial field for four decades and extended applications to the medical and aerospace. In high-speed 3D printing center, there is customized machine called Page-Wide Diode Laser (PWDL) which is advanced type of powder bed fusion with over hundreds diode laser. The machine takes few seconds sintering a A4 size printing area which induces saving the printing process time and is able to sinter wide-range of materials. Despite many advantages of this machine, researchers are still trying to check the feasibility of new material. They have to buy unexpected material to do trial-and-error research which spends much money and time. Few optical software which can generate random size powder is available on market. Furthermore, some material, like PMMA, is low in absorptivity which has to mix with other high absorbance material. Thus, this study developed customized physics engine including powder delivery and optical path in the Page-wide diode Laser.
Realizing the fundamental physics on kinematics and optics is important for building the physics engine. Initially, all physical factors need to be simplified, and parameters with small impacts need to be eliminated. Then, applying into the software.
The physics engine is fully developed by C++ and integrated with bullet physics. It covers many useful functions for researchers. For instance, dynamics collision, optical path, visualized results, animation etc.
The results showed the powder distribution on printing area in powder delivery displayed how laser penetrate to the underneath powder, and then quantify the absorbed energy on each powder. Whole results help increase the understanding whether the new material can be used on the machine.

中文摘要 I ABSTRACT II TABLE OF CONTENTS III LIST OF FIGURES VI LIST OF TABLES VIII 1. INTRODUCTION 1 1.1 Research Background and Motivation 1 1.2 Purpose of the Study 2 1.3 Framework of the Study 3 2. LITERARTURE REVIEW 4 2.1 Powder Bed Fusion (PBF) 4 2.2 Parameters and Factors in PBF 5 2.3 Laser Heat Source Model 6 Gaussian Laser Beam 6 Absorptivity and Ray-Tracing Calculations 7 2.4 Powder Layer 8 Powder Array Packaging 8 Powder Size Distribution 9 2.5 Light Factors in Doping Concentration 10 3. METHODOLOGY 11 3.1 System Design 11 3.2 Powder Factors 12 Shape of Particle 12 Rigid Body 12 Powder Material 13 Collision Detection 13 3.3 Optical Factors 17 Reflection 18 Refractive Index 19 Reflectance 20 Total Reflection 20 Refracted and Transmitted Light 22 Absorptivity 22 4. PHYSICS ENGINE 24 4.1 Introduction of Physics Engine 24 4.2 Working Process of Physics Engine 24 4.3 Physics Engine 25 Graphic User Interfaces Introduction 25 Introduction of the Bullet Physics 25 OpengGL Shader 26 AABB Collision Detection 27 4.4 Laser Ray Tracing 27 Rotation Matrix on Ray Tracing 28 4.5 Powder Size Distribution 30 Random Number for Powder Size Distribution 30 Random Number in Different Material Generator 31 4.6 Material Optical Factors 32 Introduction 32 Total Internal Reflection inside the Sphere 35 4.7 Visualize Result 36 Ray Tracing 36 OBJ File 38 Result of Hit Points and Energy Absorption 39 4.8 Page Wide Diode Laser Process 41 5. RESULTS 44 5.1 Transmission and Refraction by Refractive Index 44 5.2 Absorptivity on Power Size 44 5.3 Absorptivity on Power Size 46 6. DISCUSSION AND CONCLUSION 48 6.1 Conclusion 48 6.2 Advantage on Physics Engine 48 6.3 Implications of Research Findings 48 6.4 Limitations 49 Heat Transfer 49 Optical Ray Tracing Performance 49 6.5 Recommendations for Future Research 49 REFERENCES 50 APPENDIX 1 53 APPENDIX 2 56

[1] Gibson, I. (2015). Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing.
[2] Baturynska, I., Semeniuta, O., & Martinsen, K. (2018). Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework. Procedia Cirp, 67, 227-232.
[3] Kruth, J. P., Mercelis, P., Van Vaerenbergh, J., & Craeghs, T. (2007). Feedback control of selective laser melting. In Proceedings of the 3rd international conference on advanced research in virtual and rapid prototyping (pp. 521-527). Taylor & Francis Ltd.
[4] Foroozmehr, A., Badrossamay, M., Foroozmehr, E., & Golabi, S. I. (2016). Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Materials & Design, 89, 255-263.
[5] Klocke, F., & Wagner, C. (2003). Coalescence behaviour of two metallic particles as base mechanism of selective laser sintering. CIRP Annals, 52(1), 177-180.
[6] Yin, J., Zhu, H., Ke, L., Hu, P., He, C., Zhang, H., & Zeng, X. (2016). A finite element model of thermal evolution in laser micro sintering. The International Journal of Advanced Manufacturing Technology, 83(9-12), 1847-1859.
[7] Boley, C. D., Khairallah, S. A., & Rubenchik, A. M. (2015). Calculation of laser absorption by metal powders in additive manufacturing. Applied optics, 54(9), 2477-2482.
[8] Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald, C., ... & Van Stryland, E. (2009). Handbook of Optics, Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry.
[9] Rubenchik, A., Wu, S., Mitchell, S., Golosker, I., LeBlanc, M., & Peterson, N. (2015). Direct measurements of temperature-dependent laser absorptivity of metal powders. Applied optics, 54(24), 7230-7233.
[10] Ghosh, G., & Palik, E. D. (1997). Handbook of Optical Constants of Solids, Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications. Elsevier Science.
[11] Zhang, Z., Zhao, P., Lin, P., & Sun, F. (2006). Thermo-optic coefficients of polymers for optical waveguide applications. Polymer, 47(14), 4893-4896.
[12] Tran, H. C., & Lo, Y. L. (2018). Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. Journal of Materials Processing Technology, 255, 411-425
[13] Najeeb, H. N., Balakit, A. A., Wahab, G. A., & Kodeary, A. K. (2014). Study of the optical properties of poly (methyl methaacrylate)(pmma) doped with a new diarylethen compound. Academic Research International, 5(1), 48-56.
[14] Frobenius. Snell's law in vector form. Retrieved from https://physics.stackexchange.com/users/227119/frobenius (version: 2018-10-23):
[15] Zhang, X., Qiu, J., Li, X., Zhao, J., & Liu, L. (2020). Complex refractive indices measurements of polymers in visible and near-infrared bands. Applied optics, 59(8), 2337-2344.
[16] Arakawa, E. T., Williams, M. W., & Inagaki, T. (1977). Optical properties of arc‐evaporated carbon films between 0.6 and 3.8 eV. Journal of Applied Physics, 48(7), 3176-3177.
[17] Polyanskiy, M. N. Refractive index database. Retrieved from https://refractiveindex.info. on 2021-07-10.
[18] Johnson, P. B., & Christy, R. W. (1972). Optical constants of the noble metals. Physical review B, 6(12), 4370.

無法下載圖示 全文公開日期 2025/01/27 (校內網路)
全文公開日期 2032/01/27 (校外網路)
全文公開日期 2032/01/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE