簡易檢索 / 詳目顯示

研究生: 吳仲翔
Chung-Hsan Wu
論文名稱: 利用Yarrowia lipolytica 生產生質酒精
Bioethanol production from Yarrowia lipolytica Po1g biomass
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 王孟菊
Meng-Jiy Wang
李文乾
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: Sacchromyces cerevisiaeYarrowia lipolytica水解酒精
外文關鍵詞: Sacchromyces cerevisiae, Yarrowia lipolytica, Hydrolysis, ethanol
相關次數: 點閱:163下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生質酒精發展到現在已經是一個重要的替代能源。在這研究中,我們使用Yarrowia lipolytica酵母菌的菌體來產生質酒精。探討乾菌與酸溶液的比例(1:8-1:15)、水解溫度(90-150℃)以及硫酸濃度(2-15% w/w)在固定水解反應時間為1小時下對於水解結果的影響。取乾菌與酸溶液為1:10、以6wt%的硫酸溶液在120℃並且使用去脂乾菌來進行水解,可以得到最大的葡萄糖量,濃度與產率分別為35.89 g/L。使用次臨界水前處理對於葡萄糖產量有負面的影響﹔若使用未經去脂處理的乾菌來水解,以6wt%的硫酸溶液在120℃水解條件下只能得到14.53 g/L的葡萄糖。在此研究中,可得到的最大酒精濃度為13.39 g/L;產率為0.084克酒精/克乾菌重(0.38克酒精/克葡萄糖)。


    Bioethanol has become an important alternative energy source. Bioethanol production from the yeast Yarrowia lipolytica biomass was studied. The effects of biomass to acid solution ratio (1:8 – 1:15) temperature (90 - 150oC) and H2SO4 concentration (2 - 15% w/w) on the saccharification of biomass at a hydrolysis time of 1 h were investigated. A maximum glucose concentration of 35.89 g/L can be produced from defatted biomass, biomass to acid solution ratio equal to 1:10 and using 6% H2SO4 at 120oC. Subcritical water (SCW) pretreatment has negligible effect on maximum glucose concentration achievable. Only 14.53 g/L glucose can be produced using 6% H2SO4 at 120oC if un-defatted biomass was used. The highest ethanol concentration achieved was 13.39 g/L with a corresponding ethanol yield of 0.084 g/g dry biomass (0.38 g ethanol/g glucose).

    中文摘要.............................................…………………………………………………I Abstract………………………………………………………………………………..II Acknowledgement……………………………………………………………………III Contents……………………………………………………………………………...IV List of Figures……………………………………………………………………….VII List of Tables…………………………………………………………………………IX Chapter 1………………………………………………………………………………1 Introduction……………………………………………………………………………1 1.1. Background of study………………………………………………………..…1 1.2. Objective of this study…………………………………………………………3 Chapter 2………………………………………………………………………………4 Literature review………………………………………………………………………4 2.1. Bioethanol from lignocellulosic materials……………………………………..4 2.2. Bioethanol from microalgae…………………………………………………...5 2.3. Yarrowia lipolytica…………………………………………………………….8 2.4. Acid Hydrolysis………………………………………………………………..8 2.5. Enzymatic hydrolysis…………………………………………………………10 2.6. Subcritical water (SCW) pretreatment………………………………..………12 2.7. Alkaline pretreatment…………………………………………………………12 Chapter 3……………………………………………………………………………..14 Materials and Methods……………………………………………………………….14 3.1. Materials………………………………………………………………………14 3.1.1. Microorganism……………………………………………………….......14 3.1.2. Chemicals………………………………………………………...............14 3.2 Apparatus and equipments…………………………………………………….15 3.3 Conceptual framework of methodology……………………………………....16 3.4 Raw material and pretreatment………………………………………………..19 3.4.1 Microorganism……………………………………………………………19 3.4.2 Inoculum…………………………………………………………………..19 3.4.3 Microbial Culture…………………………………………………………19 3.4.4 Soxhlet extraction…………………………………………………………19 3.5 SCW pretreatment……………………………………………………………..20 3.6 Acid hydrolysis of the dry biomass……………………………………………20 3.7 Neutralization of dried cell hydrolysate……………………………………….20 3.8 Fermentation…………………………………………………………………...20 3.9 Sugar analysis………………………………………………………………….21 3.10 Inhibitor analysis……………………………………………………………..21 3.11 Total reducing sugar determination…………………………………………..22 3.12 Ethanol analysis………………………………………………………………22 Chapter 4……………………………………………………………………………..23 Results and discussion………………………………………………………………..23 4.1 Composition of dry defatted Yarrowia lipolytica biomass……………………23 4.2. Effect of hydrolysis temperature……………………………………………...23 4.3 The effect of acid concentration……………………………………………….27 4.4 Effect of biomass loading……………………………………………………...30 4.5 Effect of SCW pretreatment…………………………………………………...32 4.6 Effect of lipid extraction……………………………………………………….35 4.7 Fermentation and ethanol production………………………………………….38 4.8 Comparison with other studies………………………………………………...39 Chapter 5……………………………………………………………………………..41 Conclusion……………………………………………………………………………41 References……………………………………………………………………………42 List of Figures Figure 3.1 Flow chart of hydrolysis process……………………………………….17 Figure 3.2 Flow chart of fermentation process…………………………………….17 Fig. 4.1 Effect of temperature on glucose concentration. Reactions were carried out with 6 wt% sulfuric acid for 1 h and biomass to acid solution ratio is 1 to 10. Lipid free biomass was used without SCW pretreatment……………………………….26 Fig. 4.2 Effect of temperature on inhibitor concentration. Reactions were carried out with 6 wt% sulfuric acid for 1 h and biomass to acid solution ratio is 1 to 10. Lipid free biomass was used without SCW pretreatment…………………………26 Fig. 4.3 Effect of sulfuric acid concentration on glucose concentration. Reactions were carried out at 121 oC for 1 h and biomass to acid solution ratio is 1 to 10 using defatted biomass without SCW pretreatment……………………………………..29 Fig. 4.4 Effect of sulfuric acid concentration on inhibitor concentration. Reactions were carried out at 121 oC for 1 h and biomass to acid solution ratio is 1 to 10 using defatted biomass without SCW pretreatment……………………………………..29 Fig. 4.5 Effect of biomass to acid solution ratio on glucose concentration. Reactions were carried out with 6 wt.% of sulfuric acid at 121 oC for 1 h using defatted biomass without SCW pretreatment…………………………………………………………..31 Fig. 4.6 Effect of biomass to acid solution ratio on inhibitor concentration. Reactions were carried out with 6wt.% of sulfuric acid at 121 oC for 1 h using defatted biomass without SCW pretreatment……………………………………......31 Fig. 4.7 Effect of SCW pretreatment temperature on glucose concentration. Reactions were carried out at biomass to acid solution ratio 1:10, at 121 oC, 6 wt% acid and 1 h using defatted biomass…………………………………………………34 Fig. 4.8 Effect of SCW pretreatment temperature on inhibitor concentration. Reactions were carried out at solid to liquid ratio 1:10, at 121 oC, 6 wt% acid and 1 h using defatted biomass………………………………………………………………34 Fig. 4.9 Effect of biomass lipid on glucose concentration. Reactions were carried out at 121 oC, 1 h and at solid to liquid ratio 1:10 on biomass without SCW pretreatment…………………………………………………………………………36 Fig. 4.10 Effect of biomass lipid on HMF concentration. Reactions were carried out at 121 oC, 1 h and at solid to liquid ratio of 1:10 on biomass without SCW pretreatment………………………………………………………………………….36 Fig. 4.11 Effect of biomass lipid on furfural concentration. Reactions were carried out at 121 oC, 1 h and at solid to liquid ratio of 1:10 on biomass without SCW pretreatment………………………………………………………………………….37 Fig. 4.12 Time courses of glucose consumption and ethanol production in fermentation………………………………………………………………………….38 List of Tables Table 1 Oil content of some microalgae species (%)………………………………….7 Table 2 Amount of protein and carbohydrates from various species of microalgae on dry matter basis (%)…………………………………………………………………...7 Table 3 Sugar and ethanol concentrations using various biomass and with different pretreatment or hydrolysis method…………………………………………………..40

    Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858-875.
    Balat, M., Balat, H., Oz, C. 2008. Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551-573.
    Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.-L., Molina-Jouve, C., Nicaud, J.-M. 2009. Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375-387.
    Choi, S.P., Nguyen, M.T., Sim, S.J. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology, 101(14), 5330-5336.
    de los Santos, M., Batlle, R., Salafranca, J., Nerin, C. 2005. Subcritical water and dynamic sonication-assisted solvent extraction of fluorescent whitening agents and azo dyes in paper samples. Journal of Chromatography A, 1064(2), 135-141.
    Ellis, J.T., Hengge, N.N., Sims, R.C., Miller, C.D. 2012. Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technology, 111(0), 491-495.
    Gamez, S., Gonzalez-Cabriales, J.J., Ramirez, J.A., Garrote, G., Vazquez, M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 74(1), 78-88.
    Goh, C.S., Lee, K.T., Bhatia, S. 2010. Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresource Technology, 101(19), 7362-7367.
    Harun, R., Danquah, M.K. 2011. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 46(1), 304-309.
    Harun, R., Danquah, M.K., Forde, G.M. 2010a. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology & Biotechnology, 85(2), 199-203.
    Harun, R., Jason, W.S.Y., Cherrington, T., Danquah, M.K. 2011. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 88(10), 3464-3467.
    Harun, R., Singh, M., Forde, G.M., Danquah, M.K. 2010b. Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14(3), 1037-1047.
    Hashimoto, S., Watanabe, K., Nose, K., Morita, M. 2004. Remediation of soil contaminated with dioxins by subcritical water extraction. Chemosphere, 54(1), 89-96.
    Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38-46.
    Ibanez, E., Kubatova, A., Senorans, F.J., Cavero, S., Reglero, G., Hawthorne, S.B. 2002. Subcritical Water Extraction of Antioxidant Compounds from Rosemary Plants. Journal of Agricultural and Food Chemistry, 51(2), 375-382.
    Jeong, T.S., Choi, C.H., Lee, J.Y., Oh, K.K. 2012. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii. Bioresource Technology, 116(0), 435-440.
    Jeong, T.S., Kim, Y.S., Oh, K.K. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresource Technology, 102(22), 10529-10534.
    John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186-193.
    Ju, Y.-H., Huynh, L.-H., Kasim, N.S., Guo, T.-J., Wang, J.-H., Fazary, A.E. 2011. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydrate Polymers, 83(2), 591-599.
    Karimi, K., Kheradmandinia, S., Taherzadeh, M.J. 2006. Conversion of rice straw to sugars by dilute-acid hydrolysis. BIOMASS AND BIOENERGY, 30(3), 247-253.
    Lebeau, T., Jouenne, T., Junter, G.A. 1997. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme and Microbial Technology, 21(4), 265-272.
    Lenihan, P., Orozco, A., O’Neill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M. 2010. Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395-403.
    Mathew, A.K., Chaney, K., Crook, M., Humphries, A.C. 2011. Alkaline pre-treatment of oilseed rape straw for bioethanol production: Evaluation of glucose yield and pre-treatment energy consumption. Bioresource Technology, 102(11), 6547-6553.
    Mohamed, A.R., Mohammadi, M., Darzi, G.N. 2010. Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable and Sustainable Energy Reviews, 14(6), 1591-1599.
    Nigam, P.S., Singh, A. 2011. Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52-68.
    Palmarola-Adrados, B., Chotěborska, P., Galbe, M., Zacchi, G. 2005. Ethanol production from non-starch carbohydrates of wheat bran. Bioresource Technology, 96(7), 843-850.
    Razif Harun, W.S.Y.J., TamaraCherrington, MichaelK.Danquah. 2010. Microalgal biomass as a cellulosic fermentation feedstock for,bioethanol production. Renewable and Sustainable Energy Reviews.
    Russo, D., Dassisti, M., Lawlor, V., Olabi, A.G. 2012. State of the art of biofuels from pure plant oil. Renewable and Sustainable Energy Reviews, 16(6), 4056-4070.
    Saha, B.C., Cotta, M.A. 2008. Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. BIOMASS AND BIOENERGY, 32(10), 971-977.
    Schadel, C., Blochl, A., Richter, A., Hoch, G. 2010. Quantification and monosaccharide composition of hemicelluloses from different plant functional types. Plant Physiology and Biochemistry, 48(1), 1-8.
    Shrestha, P., Khanal, S.K., Pometto Iii, A.L., van Leeuwen, J. 2010. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresource Technology, 101(22), 8698-8705.
    Singh, A., Olsen, S.I. 2011. A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548-3555.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2008. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP).
    Song, C., Hu, H., Zhu, S., Wang, G., Chen, G. 2003. Nonisothermal Catalytic Liquefaction of Corn Stalk in Subcritical and Supercritical Water. Energy & Fuels, 18(1), 90-96.
    Suali, E., Sarbatly, R. 2012. Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342.
    Tsigie, Y.A., Huynh, L.H., Ahmed, I.N., Ju, Y.-H. 2012. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment. Bioresource Technology, 111(0), 201-207.
    Tsigie, Y.A., Wang, C.-Y., Truong, C.-T., Ju, Y.-H. 2011. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technology, 102(19), 9216-9222.
    Yu, Z.G., Gong, H., Wu, P. 2005. Dopant Sources Choice for Formation of p-Type ZnO: Phosphorus Compound Sources. ChemInform, 36(19), no-no.
    Zhou, N., Zhang, Y., Wu, X., Gong, X., Wang, Q. 2011. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technology, 102(21), 10158-10161.

    QR CODE