簡易檢索 / 詳目顯示

研究生: 黃冠瑜
Kuan-Yu Huang
論文名稱: 應用於引導牙周再生的雙重藥物釋放載體
Dual Drug-Loaded Electrospun Composite Membrane for Periodontal Regeneration
指導教授: 何明樺
Ming-Hua Ho
口試委員: 張博鈞
Po-Chun Chang
糜福龍
Fwu-Long Mi
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 217
中文關鍵詞: 骨組織再生抗菌纖維靜電紡絲藥物載體聚D,L-乳酸幾丁聚醣
外文關鍵詞: PDLLA, emdogain
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XII 圖目錄 XIII 專有名詞及縮寫 XXX 第一章 緒論 1 第二章 文獻回顧 3 2.1 牙周病 3 2.1.1 牙周組織再生術 5 2.1.2 引導組織再生膜 6 2.2 靜電紡絲原理 11 2.2.1 靜電紡絲於組織工程及藥物遞送系統之應用 12 2.2.2 靜電紡絲應用於牙周病治療 14 2.2.3鑲嵌式纖維應用於骨組織再生 18 2.2.4 牙周病臨床藥物 21 第三章 實驗材料與方法 25 3.1實驗藥品 25 3.2實驗儀器 28 3.3實驗步驟 30 Part 1:PDLLA雙重釋放纖維 31 A. 製備聚D,L-乳酸共聚物(PDLLA)奈米纖維 31 B. 製備幾丁聚醣奈米顆粒 32 C. 製備鑲嵌式奈米纖維 33 Part 2:幾丁聚醣長效抗菌纖維 34 A. 製備幾丁聚醣奈米纖維 34 B. 材料中和處理 35 C. 製備含有褐藻醣膠或梔子素之幾丁聚醣奈米纖維 35 D. 製備硫化銅(CuS)奈米顆粒 (由北醫提供) 36 E. 製備摻混CuS奈米顆粒之奈米纖維 36 3.4 材料鑑定與性質鑑定 37 3.4.1 掃描式電子顯微鏡(SEM)分析 37 3.4.2 共軛焦螢光顯微鏡(Confocal Microscopy) 分析 37 3.4.3 傅立葉轉換紅外線光譜(FTIR)分析 38 3.4.4 熱重分析(TGA) 38 3.4.5 X射線繞射分析(XRD) 38 3.4.6 接觸角(Contact Angle)量測分析 39 3.4.7 重量損失(Weight Loss)測試 40 3.5 體外藥物釋放 41 3.5.1 藥物封裝率 41 3.5.2 藥物控制釋放 42 3.6 體外細胞實驗 43 3.6.1 實驗操作 43 3.6.2 細胞來源 44 3.6.3 培養基配置 45 3.6.4 細胞培養 46 3.6.5 細胞冷凍保存 46 3.6.6 細胞解凍及培養 47 3.6.7 細胞計數 47 3.6.8 粒線體活性測試 49 3.6.9 鹼性磷酸酶測試 51 3.6.10 蛋白質濃度測定 53 3.6.11 Von Kossa染色 55 3.6.12 電顯觀察前之細胞樣本處理方式 56 3.7 抗菌檢測 58 3.7.1 菌落形成單位法(Colony Forming Unit, CFU) 58 3.7.2 細菌來源 59 3.7.3 培養基配置及塗盤 59 第四章 實驗結果與討論 61 Part 1:PDLLA雙重釋放纖維 62 4.1 PDLLA奈米纖維最佳化條件的探討 62 4.1.1 包埋藥物濃度的影響 62 4.2 幾丁聚醣奈米顆粒最佳化條件的探討 66 4.2.1 包埋藥物濃度的影響 66 4.3 鑲嵌式奈米纖維(e-NF)之製備與分析 69 4.3.1 鑲嵌顆粒對纖維型態之影響 69 4.3.2 射出管徑對鑲嵌式纖維型態之影響 74 4.4 鑲嵌式纖維及裝載藥物後之官能基分析 79 4.5 體外控制釋放 83 4.5.1 藥物封裝率 83 4.5.2 PDLLA奈米纖維的釋放 86 4.5.3 CS奈米顆粒的釋放 88 4.6 生物相容性 93 4.6.1殺菌處理對材料結構之影響 93 4.6.2 CS奈米顆粒載藥物對骨母細胞的活性表現 94 4.6.3 PDLLA鑲嵌式纖維裝載藥物對骨母細胞的活性表現 97 4.7 磷酸酶表現 104 4.8 礦化表現 109 4.9 抗菌表現 114 4.9.1 材料對牙齒細菌的抗菌表現 114 4.9.2 材料對大腸桿菌的抗菌表現 116 Part 2:幾丁聚醣抗菌纖維 118 4.10 CS奈米纖維最佳化條件的探討 118 4.10.1 環境濕度影響 118 4.10.2 FD濃度對奈米纖維型態之影響 120 4.11 CuS奈米顆粒最佳化條件的探討 (北醫提供) 127 4.12 摻混式奈米纖維之製備與分析 129 4.12.1 摻混CuS顆粒濃度對纖維型態之影響 129 4.12.2 摻混型奈米纖維表面及內部分析 132 4.13 穩定性檢測 135 4.14 生物相容性 146 4.14.1 FD&GP包覆CS奈米纖維對骨母細胞的活性表現 146 4.14.2 摻混型奈米纖維對骨母細胞的活性表現 148 4.15鹼性磷酸酶表現及礦化表現 150 4.16 鑲嵌式纖維的光熱效應(由北醫提供) 153 4.17抗菌表現(由北醫提供) 154 4.17.1 CS纖維的抗菌表現 154 4.17.2 摻混CuS後CS纖維的抗菌表現 156 第五章 結論 160 參考文獻 162 Appendix 183

參考文獻
1. Pihlstrom, B.L., B.S. Michalowicz, and N.W. Johnson, "Periodontal diseases" Lancet; 2005; 366: 1809-1820.
2. Haffajee, A.D. and S.S. Socransky, "Microbial etiological agents of destructive periodontal diseases" Periodontol 2000; 1994; 5: 78-111.
3. Balkaran, R., R.S. Naidu, S. Teelucksingh, T. Seemungal, L.M.P. Pereira, E. Prayman, and A. Bissoon, "A preliminary investigation of periodontal disease and diabetes in Trinidad" West Indian Med J; 2011; 60: 86-90.
4. Lindhe, J., E. Westfelt, S. Nyman, S.S. Socransky, and A.D. Haffajee, "Long-term effect of surgical/non-surgical treatment of periodontal disease" J Clin Periodontol; 1983; 11: 448-458.
5. Botelho, J., V. Machado, L. Proenca, D.H. Bellini, L. Chambrone, G. Alcoforado, and J.J. Mendes, "The impact of nonsurgical periodontal treatment on oral health-related quality of life: a systematic review and meta-analysis" Clin Oral Investig; 2020; 24: 585-596.
6. Nanci, A. and D.D. Bosshardt, "Structure of periodontal tissuesin health and disease" Periodontol 2000; 2006; 40: 11-28.
7. Bottinoa, M.C., V. Thomas, G. Schmidt, Y.K. Vohra, T.-M.G. Chu, M.J. Kowolikd, and G.M. Janowski, "Recent advances in the development of GTR/GBR membranes for periodontal regeneration- a materials perspective" Dent Mater; 2012; 28: 703-721.
8. Shimauchi, H., E. Nemoto, H. Ishihata, and M. Shimomura, "Possible functional scaffolds for periodontal regeneration" Jpn Dent Sci Rev; 2013; 49: 118-130.
9. Priya, P. and B. Bhuvaneshwarri, "Guided bone regeneration - a review" Biomed Pharmacol J; 2015; 8: 365-368.
10. Scantlebury, T.V., "1982‐1992: A decade of technology development for guided tissue regeneration" J Periodontol; 1993; 64: 1129-1137.
11. Toygar, H.U., E. Guzeldemir, U. Cilasun, D. Akkor, and N. Arpak, "Long-term clinical evaluation and SEM analysis of the e-PTFE and titanium membranes in guided tissue regeneration" J Biomed Mater Res B Appl Biomater; 2009; 91: 772-779.
12. Bottinoa, M.C., V. Thomas, and G.M. Janowski, "A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration" Acta Biomater; 2011; 7: 216-224.
13. Lee, C.H., A. Singla, and Y. Lee, "Biomedical applications of collagen" Int J Pharm; 2001; 221: 1-22.
14. Friess, W., "Collagen-biomaterial for drug delivery" Eur J Pharm Biopharm; 1998; 45: 113-136.
15. Parmar, P.D., R. Dhamija, S. Tewari, P. Sangwan, A. Gupta, J. Duhan, and S. Mittal, "2D and 3D radiographic outcome assessment of the effect of guided tissue regeneration using resorbable collagen membrane in the healing of through-and-through periapical lesions - a randomized controlled trial" Int Endod J; 2019; 52: 935-948.
16. Christgau, M., R.G. Caffesse, G. Schmalz, and R.N. D’Souza, "Extracellular matrix expression and periodontal wound-healing dynamics following guided tissue regeneration therapy in canine furcation defects" J Clin Periodontol; 2007; 34: 691-708.
17. Hwang, J.W., S. Kim, S. WonKim, and J.H. Lee, "Effect of extracellular matrix membrane on bone formation in a rabbit tibial defect model" Biomed Res Int; 2016; 2016: 1-8.
18. 郭育仁(2011)。電紡collagen/chitosan/PVA奈米纖維支架為傷口
敷料之研究。國立臺北科技大學化學工程研究所碩士學位論文,  
頁8、28。
19. Santos, A.R. and M.L.F. Wada, "Bioreabsorbable polymers for cell culture substrate and tissue engineering" Polímeros; 2007; 17: 308-317.
20. Versypt, A.N.F., D.W. Pack, and R.D. Braatz, "Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres- a review" J Control Release; 2013; 165: 29-37.
21. Jelonek, K., S. Li, J. Kasperczyk, X. Wu, and A. Orchel, "Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers" Mater Sci Eng C Mater Biol Appl; 2017; 75: 918-925.
22. Bose, S., N. Sarkar, and S. Vahabzadeh, "Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth" Mater Sci Eng C Mater Biol Appl; 2019; 105: 1-10.
23. Witschi, C. and E. Doelker, "Peptide degradation during preparation and in vitro release testing of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) microparticles" Int J Pharm; 1998; 171: 1-18.
24. Burg, K.J., S. Porter, and J.F. Kellam, "Biomaterial developments for bone tissue engineering" Biomaterials; 2000; 21: 2347-2359.
25. Valenti, S., A. Diaz, M. Romanini, L.J. Del Valle, J. Puiggali, J.L. Tamarit, and R. Macovez, "Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release" Int J Pharm; 2019; 568: 1-11.
26. Alemrayat, B., A. Elhissi, and H.M. Younes, "Preparation and characterization of letrozole-loaded poly(D,L-lactide) nanoparticles for drug delivery in breast cancer therapy" Pharm Dev Technol; 2019; 24: 235-242.
27. Cui, W., X. Zhu, Y. Yang, X. Li, and Y. Jin, "Evaluation of electrospun fibrous scaffolds of poly(dl-lactide) and poly(ethylene glycol) for skin tissue engineering" Mater Sci Eng C; 2009; 29: 1869-1876.
28. Liu, W., L. Zhu, Y. Ma, L. Ai, W. Wen, C. Zhou, and B. Luo, "Well-ordered chitin whiskers layer with high stability on the surface of poly(D,L-lactide) film for enhancing mechanical and osteogenic properties" Carbohydr Polym; 2019; 212: 277-288.
29. Koort, J.K., T.J. Makinen, E. Suokas, M. Veiranto, J. Jalava, P. Tormala, and H.T. Aro, "Sustained release of ciprofloxacin from an osteoconductive poly(D,L-lactide) implant" Acta Orthop; 2008; 79: 295-301.
30. Gierej, A., F. Berghmans, M. Vagenende, A. Filipkowski, B. Siwicki, R. Buczynski, H. Thienpont, S. Van Vlierberghe, T. Geernaert, and P. Dubruel, "Poly(D,L-lactic acid) (PDLLA) biodegradable and biocompatible polymer optical fiber" J Light Technol; 2019; 37: 1916-1923.
31. Unnithan, A.R., R.S. Arathyram, and C.S. Kim, "Electrospinning of polymers for tissue engineering" Nanotechnol Appl Tissue Eng; 2015: 45-55.
32. Li, D. and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?" Adv Mater; 2004; 16: 1151-1170.
33. Teo, W.E. and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies" Nanotechnology; 2006; 17: R89-R106.
34. Bhardwaj, N. and S.C. Kundu, "Electrospinning: a fascinating fiber fabrication technique" Biotechnol Adv; 2010; 28: 325-347.
35. Yazdanpanah, A., M. Tahmasbi, G. Amoabediny, J. Nourmohammadi, F. Moztarzadeh, and M. Mozafari, "Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: oward a new design for performance enhancement in vascular tissue engineering" Prog Nat Sci; 2015; 25: 405-413.
36. Shang, S., F. Yang, X. Cheng, X.F. Walboomers, and J.A. Jansen, "The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells" Eur Cell Mater; 2010; 19: 180-192.
37. Cardwell, R.D., L.A. Dahlgren, and A.S. Goldstein, "Electrospun fibre diameter, not alignment, affects mesenchymal stem cell differentiation into the tendon/ligament lineage" J Tissue Eng Regen Med; 2014; 8: 937–945.
38. Ru, C., F. Wang, M. Pang, L. Sun, R. Chen, and Y. Sun, "A suspending, shrinkage-free electrospun PLGA nanofibrous scaffold for skin tissue engineering" ACS Appl Mater Interfaces; 2015; 7: 10872–10877.
39. WJ, L., D. KG, A. PG, and T. RS, "Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds" J Biomed Mater Res; 2003; 67A: 1105-1114.
40. Bose, S., M. Roy, and A. Bandyopadhyay, "Recent advances in bone tissue engineering scaffolds" Trends Biotechnol; 2012; 30: 546-554.
41. Davidenko, N., C.F. Schuster, D.V. Bax, R.W. Farndale, S. Hamaia, S.M. Best, and R.E. Cameron, "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry" J Mater Sci Mater Med; 2016; 27: 1-14.
42. Akhgari, A., Z. Shakib, and S. Sanati, "A review on electrospun nanofibers for oral drug delivery" Nanomedicine J; 2017; 4: 197-207.
43. Spasova, M., D. Paneva, N. Manolova, P. Radenkov, and I. Rashkov, "Electrospun chitosan-coated fibers of poly(L-lactide) and poly(L-lactide)/poly(ethylene glycol): preparation and characterization" Macromol Biosci; 2008; 8: 153-162.
44. Khil, M.S., D.I. Cha, H.Y. Kim, I.S. Kim, and N. Bhattarai, "Electrospun nanofibrous polyurethane membrane as wound dressing" J Biomed Mater Res B Appl Biomater; 2003; 67B: 675-679.
45. Park, H., D.J. Lim, S.H. Lee, and H. Park, "Nanofibrous mineralized electrospun scaffold as a substrate for bone tissue regeneration" J Biomed Nanotechnol; 2016; 12: 2076-2082.
46. Tian, F., X. Niu, X. Li, Q.L. Feng, and Y. Fan, "Porous poly(L-lactic acid) scaffold reinforced by titanium dioxide nanoparticles" J Tissue Eng; 2016; 6: 478-483.
47. Son, Y.J., W. Mao, S. Kang, K. Kim, H. Kang, Y. Kim, and H.S. Yoo, "Electrospining of nanofibrous meshes composed of hypromellose and poly(vinyl alcohol) for one-day release of cationic peptide" J Nanosci Nanotechnol; 2019; 19: 7920-7925.
48. Pitcher, G.R., H.N. Newman, and J.D. Strahan, "Access to subgingival plaque by disclosing agents using mouthrinsing and direct irrigation" J Clin Periodontol; 1980; 7: 300-308.
49. Vandekerckhove, B.N.A., M. Quirynen, and D.V. Steenberghe, "The use of tetracycline‐containing controlled‐release fibers in the treatment of refractory periodontitis" J Periodontol; 1997; 68: 353-361.
50. Stoller, N.H., L.R. Johnson, S. Trapnell, C.Q. Harrold, and S. Garrett, "The pharmacokinetic profile of a biodegradable controlled-release delivery system containing doxycycline compared to systemically delivered doxycycline in gingival crevicular fluid, saliva, and serum" J Periodontol; 1998; 69: 1085-1091.
51. Goodson, J.M., D. Holborow, R.L. Dunn, P. Hogan, and S. Dunham, "Monolithic tetracycline-containing fibers for controlled delivery to periodontal pockets" J Periodontol; 1983; 54: 575-579.
52. Zamani, M., M. Morshed, J. Varshosaz, and M. Jannesari, "Controlled release of metronidazole benzoate from poly epsilon-caprolactone electrospun nanofibers for periodontal diseases" Eur J Pharm Biopharm; 2010; 75: 179-185.
53. Reise, M., R. Wyrwa, U. Muller, M. Zylinski, A. Volpel, M. Schnabelrauch, A. Berg, K.D. Jandt, D.C. Watts, and B.W. Sigusch, "Release of metronidazole from electrospun poly(L-lactide-co-D/L-lactide) fibers for local periodontitis treatment" Dent Mater; 2012; 28: 179-188.
54. Zhou, T., X. Liu, B. Sui, C. Liu, X. Mo, and J. Sun, "Development of fish collagen/bioactive glass/chitosan composite nanofibers as a GTR/GBR membrane for inducing periodontal tissue regeneration" Biomed Mater; 2017; 12: 1-12.
55. Shalaby, T.I., N.M. Fekry, A.S.E. Sodfy, A.G.E. Sheredy, and M.E.S.S.A. Moustafa, "Preparation and characterization of antibacterial silver-containing nanofibers for wound healing in diabetic mice" Int J Nanoparticles; 2015; 8: 82-98.
56. Song, J., H. Kang, C. Lee, S.H. Hwang, and J. Jang, "Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity" ACS Appl Mater Interfaces; 2012; 4: 460-465.
57. Nublat, C., C. Braud, H. Garreau, and M. Vert, "Ammonium bicarbonate as porogen to make tetracycline-loaded porous bioresorbable membranes for dental guided tissue regeneration: failure due to tetracycline instability" J Biomater Sci Polym Ed; 2006; 17: 1333-1346.
58. Higuchi, J., G. Fortunato, B. Wozniak, A. Chodara, S. Domaschke, S. Meczynska-Wielgosz, M. Kruszewski, A. Dommann, and W. Lojkowski, "Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration" Nanomaterials (Basel); 2019; 9: 1-24.
59. Shalumon, K.T., S. Sowmya, D. Sathish, K.P. Chennazhi, S.V. Nair, and R. Jayakumar, "Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering" J Biomed Nanotechnol; 2013; 9: 430-440.
60. Boda, S.K., Y. Almoshari, H. Wang, X. Wang, R.A. Reinhardt, B. Duan, D. Wang, and J. Xie, "Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration" Acta Biomater; 2019; 85: 282-293.
61. Sun, J., L. Song, Y. Fan, L. Tian, S. Luan, S. Niu, L. Ren, W. Ming, and J. Zhao, "Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source" ACS Appl Mater Interfaces; 2019; 11: 26581-26589.
62. Shi, Y., M. Liu, F. Deng, G. Zeng, Q. Wan, X. Zhang, and Y. Wei, "Recent progress and development on polymeric nanomaterials for photothermal therapy: a brief overview" J Mater Chem B; 2017; 5: 194-206.
63. Yu, P., Y. Han, D. Han, X. Liu, Y. Liang, Z. Li, S. Zhu, and S. Wu, "In-situ sulfuration of Cu-based metal-organic framework for rapid near-infrared light sterilization" J Hazard Mater; 2020; 390: 1-32.
64. Atak, B.H., B. Buyuk, M. Huysal, S. Isik, M. Senel, W. Metzger, and G. Cetin, "Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications" Carbohydr Polym; 2017; 164: 200-213.
65. Shakir, M., I. Zia, A. Rehman, and R. Ullah, "Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering" Int J Biol Macromol; 2018; 111: 903-916.
66. Orellano, M.S., P. Isaac, M.L. Breser, L.P. Bohl, A. Conesa, R.D. Falcone, and C. Porporatto, "Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens" Carbohydr Polym; 2019; 213: 1-9.
67. Rinaudo, M., "Chitin and chitosan- properties and applications" Polym Sci; 2006; 31: 603-632.
68. Martins, A.M., C.M. Alves, F. Kurtis Kasper, A.G. Mikos, and R.L. Reis, "Responsive and in situ-forming chitosan scaffolds for bone tissue engineering applications: an overview of the last decade" J. Mater. Chem.; 2010; 20: 1638-1645.
69. Duan, J., X. Liang, Y. Cao, S. Wang, and L. Zhang, "High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture" Macromolecules; 2015; 48: 2706-2714.
70. Zhang, W., L. Zhao, J. Ma, X. Wang, Y. Wang, F. Ran, Y. Wang, H. Ma, and S. Yu, "Electrospinning of fucoidan/chitosan/poly(vinyl alcohol) scaffolds for vascular tissue engineering" Fibers Polym; 2017; 18: 922-932.
71. Younes, I. and M. Rinaudo, "Chitin and chitosan preparation from marine sources. Structure, properties and applications" Mar Drugs; 2015; 13: 1133-1174.
72. Yan, H., J. Chen, Y. Li, Y. Bai, Y. Wu, Z. Sheng, L. Song, C. Liu, and H. Zhang, "Ultrasmall hybrid protein-copper sulfide nanoparticles for targeted photoacoustic imaging of orthotopic hepatocellular carcinoma with a high signal-to-noise ratio" Biomater Sci; 2018; 7: 92-103.
73. Vyas, C., G. Ates, E. Aslan, J. Hart, B. Huang, and P. Bartolo, "Three-dimensional printing and electrospinning dual-scale polycaprolactone scaffolds with low-density and oriented fibers to promote cell alignment" 3D Print Addit Manuf; 2020; 7: 105-113.
74. Silvaa, T.N.d., R.P. Gonçalvesa, C.L. Rochab, B.S. Archanjoc, C.A.G. Barbozad, M.B.R. Pierree, F. Reynaudb, and P.H.d.S. Picciania, "Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration" Mater Sci Eng C Mater Biol Appl; 2019; 97: 602-612.
75. Li, T., L. Wang, Y. Huang, B. Xin, and S. Liu, "BSA loaded bead-on-string nanofiber scaffold with core-shell structure applied in tissue engineering" J Biomater Sci Polym Ed; 2020; 31: 1223-1236.
76. Li, L., G. Zhou, Y. Wang, G. Yang, S. Ding, and S. Zhou, "Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect" Biomaterials; 2015; 37: 218-229.
77. Loscertales, I.G., A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A.M. Ganan-Calvo, "Micro/nano encapsulation via electrified coaxial liquid jets" Science; 2002; 295: 1695-1698.
78. Song, B., C. Wu, and J. Chang, "Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles" Acta Biomater; 2012; 8: 1901-1907.
79. Goyal, R., L.K. Macri, H.M. Kaplan, and J. Kohn, "Nanoparticles and nanofibers for topical drug delivery" J Control Release; 2016; 240: 77-92.
80. Avanapu, S.R., P. Preetha, and P. Pushpalatha, "Biphasic drug delivery in controlled release formulations – a review" Int J Pharm Technol; 2015; 6: 3046-3060.
81. Huang, X. and C.S. Brazel, "On the importance and mechanisms of burst release in matrix-controlled drug delivery systems" J Control Release; 2001; 73: 121-136.
82. Seymour, R.A. and P.A. Heasman, "Tetracyclines in the management of periodontal diseases. A review" J Clin Periodontol; 1995; 22: 22-35.
83. Tove, L., "Susceptibility of porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole" J Oral Microbiol; 2002; 17: 267-271.
84. Seymour, R.A. and P.A. Heasman, "Pharmacological control of periodontal disease. II. Antimicrobial agents" J Dent; 1995; 23: 5-14.
85. Raval, J.P., D.R. Naik, K.A. Amin, and P.S. Patel, "Controlled-release and antibacterial studies of doxycycline-loaded poly(ε-caprolactone) microspheres" J Saudi Chem Soc; 2014; 18: 566-573.
86. Wormser, G.P., R.P. Wormser, F. Strle, R. Myers, and B.A. Cunha, "How safe is doxycycline for young children or for pregnant or breastfeeding women?" Diagn Microbiol Infect Dis; 2019; 93: 238-242.
87. Czeizel, A.E., "The role of pharmacoepidemiology in pharmacovigilance: rational drug use in pregnancy" Pharmacoepidemiol Drug Saf; 1999; 8: S55-S61.
88. Semyari, H., M. Salehi, F. Taleghani, A. Ehterami, F. Bastami, T. Jalayer, H. Semyari, M. Hamed Nabavi, and H. Semyari, "Fabrication and characterization of collagen-hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering" J Biomater Appl; 2018; 33: 501-513.
89. Shokrolahi, F., K. Khodabakhshi, P. Shokrollahi, R. Badiani, and Z.M. Moghadam, "Atorvastatin loaded PLGA microspheres: preparation, HAp coating, drug release and effect on osteogenic differentiation of ADMSCs" Int J Pharm; 2019; 565: 95-107.
90. Shah, S.R., C.A. Werlang, F.K. Kasper, and A.G. Mikos, "Novel applications of statins for bone regeneration" Natl Sci Rev; 2015; 2: 85-99.
91. Iyer, S., P.E. Donnelly, G. Spaniel, K. Young, K. Oh, and M.E. Cunningham, "Locally applied simvastatin as an adjunct to promote spinal fusion in rats" Spine (Phila Pa 1976); 2019; 44: 1042-1048.
92. Fong, C.W., "Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies" Eur J Med Chem; 2014; 85: 661-674.
93. Ting, M., E.J. Whitaker, and J.M. Albandar, "Systematic review of the in vitro effects of statins on oral and perioral microorganisms" Eur J Oral Sci; 2016; 124: 4-10.
94. Montazerolghaem, M., Y. Ning, H. Engqvist, M. Karlsson Ott, M. Tenje, and G. Mestres, "Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells" J Mater Sci Mater Med; 2016; 27: 1-9.
95. Yan, Q., L.Q. Xiao, L. Tan, W. Sun, T. Wu, L.W. Chen, Y. Mei, and B. Shi, "Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics" J Biomed Mater Res A; 2015; 103: 3580-3589.
96. Whang, K., J. McDonald, A. Khan, and N. Satsangi, "A novel osteotropic biomaterial OG-PLG: synthesis and in vitro release" J Biomed Mater Res A; 2005; 74: 237-246.
97. Pose, E., L. Napoleone, A. Amin, D. Campion, C. Jimenez, S. Piano, O. Roux, F.E. Uschner, K. de Wit, G. Zaccherini, C. Alessandria, P. Angeli, M. Bernardi, U. Beuers, P. Caraceni, F. Durand, R.P. Mookerjee, J. Trebicka, V. Vargas, R.J. Andrade, M. Carol, J. Pich, J. Ferrero, G. Domenech, M. Llopis, F. Torres, P.S. Kamath, J.G. Abraldes, E. Solà, and P. Ginès, "Safety of two different doses of simvastatin plus rifaximin in decompensated cirrhosis (liverhope-safety): a randomised, double-blind, placebo-controlled, phase 2 trial" Lancet Gastroenterol Hepatol; 2020; 5: 31-41.
98. 朱品蓉(2019)。利用靜電輔助同軸電力霧化製被用於藥物傳遞的核殼式微米藥物。國立台灣科技大學化學工程學系碩士學位論文,頁72-73。
99. Sayed, K.M.F.E., C. Dörfer, H. Ungefroren, N. Kassem, J. Wiltfang, and S. Paris, "Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells" J Craniomaxillofac Surg; 2014; 42: 568-576.
100. Newman, S.A., S.A. Coscia, R. Jotwani, V.J. Iacono, and C.W. Cutler, "Effects of enamel matrix derivative on Porphyromonas gingivalis" J Periodontol; 2003; 74: 1191-1195.
101. Hammarstrom, L., L. Heijl, and S. Gestrelius, "Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins" J Clin Periodontol; 1997; 24: 669-677.
102. Youssef, A.R., R. Emara, M.M. Taher, F.A. Al-Allaf, M. Almalki, M.A. Almasri, and S.S. Siddiqui, "Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, odontogenesis, angiogenesis and cell viability of dental pulp stem cells" BMC Oral Health; 2019; 19: 1-9.
103. SS, H., B. JE, and S. MJ, "The effect of enamel matrix protein derivative on follicle cells in vitro" J Periodontol; 2001; 72: 679-687.
104. Zaharia, A., V. Muşat, E.M. Anghel, I. Atkinson, O.C. Mocioiu, M. Buşilă, and V.G. Pleşcan, "Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization" Ceram Int; 2017; 43: 11390-11402.
105. Hammarstrom, L., "Enamel matrix, cementum development and regeneration" J Clin Periodontol; 1997; 24: 658-668.
106. Wang, F., H. Schmidt, D. Pavleska, T. Wermann, A. Seekamp, and S. Fuchs, "Crude fucoidan extracts impair angiogenesis in models relevant for bone regeneration and osteosarcoma via reduction of VEGF and SDF-1" Mar Drugs; 2017; 15: 1-16.
107. Changotade, S.I., G. Korb, J. Bassil, B. Barroukh, C. Willig, S. Colliec-Jouault, P. Durand, G. Godeau, and K. Senni, "Potential effects of a low-molecular-weight fucoidan extracted from brown algae on bone biomaterial osteoconductive properties" J Biomed Mater Res A; 2008; 87: 666-675.
108. Venkatesan, J., I. Bhatnagar, and S.K. Kim, "Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering" Mar Drugs; 2014; 12: 300-316.
109. Jin, G. and G.H. Kim, "Rapid-prototyped PCL/fucoidan composite scaffolds for bone tissue regeneration: design, fabrication, and physical/biological properties" J Mater Chem; 2011; 21: 17710–17718.
110. Seze, A.D., F. Hatipoğlu, E. Cevher, Z. Oğurtan, A.L. Baş, and J. Akbuğa, "Chitosan film containing fucoidan as a wound dressing for dermal burn healing: preparation and in vitro/in vivo evaluation" AAPS PharmSciTech; 2007; 8: E94–E101.
111. Tove, L., "Susceptibility of porphyromonas gingivalis in biofilms to amoxicillin, doxycycline and metronidazole" J Oral Microbiol; 2002; 17: 267-271.
112. Stoller, N.H., L.R. Johnson, S. Trapnell, C.Q. Harrold, and S. Garrett, "The pharmacokinetic profile of a biodegradable controlled‐release delivery system containing doxycycline compared to systemically delivered doxycycline in gingival crevicular fluid, saliva, and serum" J Periodontol; 1998; 69: 1085-1091.
113. Eskitoros Togay, S.M., Y.E. Bulbul, S. Tort, F. Demirtas Korkmaz, F. Acarturk, and N. Dilsiz, "Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system" Int J Pharm; 2019; 565: 83-94.
114. Elmehbad, N.Y. and N.A. Mohamed, "Designing, preparation and evaluation of the antimicrobial activity of biomaterials based on chitosan modified with silver nanoparticles" Int J Biol Macromol; 2020; 151: 92-103.
115. Chen, X., H. Yan, W. Sun, Z. Shi, W. Zhang, M. Lei, P. Zhang, and Q. Lin, "Electrodeposition of alginate–MnO2–C composite film on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin" Polym Bull; 2018; 76: 3971-3987.
116. Qiang, L., C. Zhang, F. Qu, X. Wu, and H. Wang, "Electrospun porous PDLLA fiber membrane coated with nHA" Appl Sci; 2018; 8: 1-13.
117. Mishra, M. and B. Mishra, "Formulation optimization and characterization of spray dried microparticles for inhalation delivery of doxycycline hyclate" Yakugaku Zasshi; 2011; 131: 1813-1825.
118. He, P., Q. Zhong, Y. Ge, Z. Guo, J. Tian, Y. Zhou, S. Ding, H. Li, and C. Zhou, "Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection" Mater Sci Eng C Mater Biol Appl; 2018; 90: 549-556.
119. Cao, Y., M.L. Mei, Q.L. Li, E.C. Lo, and C.H. Chu, "Enamel prism-like tissue regeneration using enamel matrix derivative" J Dent; 2014; 42: 1535-1542.
120. Almazin, S.M., R. Dziak, S. Andreana, and S.G. Ciancio, "The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro" J Periodontol; 2009; 80: 999-1005.
121. Chen, L., C. Yan, and Z. Zheng, "Functional polymer surfaces for controlling cell behaviors" Mater Today; 2018; 21: 38-59.
122. Beck, G., "Inorganic phosphate as a signaling molecule in osteoblast differentiation" J Cell Biochem; 2003; 90: 234-243.
123. Bellows, C.G., J.N.M. Heersche, and J.E. Aubin, "Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro" Bone Miner; 1992; 17: 15-29.
124. Keila, S., C.E. Nemcovsky, O. Moses, Z. Artzi, and M. Weinreb, "In vitro effects of enamel matrix proteins on rat bone marrow cells and gingival fibroblasts" J Dent Res; 2004; 83: 134-138.
125. Schwartz, Z., D.L. Carnes, R. Pulliam, C.H. Lohmann, V.L. Sylvia, Y. Liu, D.D. Dean, D.L. Cochran, and B.D. Boyan, "Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblastlike MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells" J Periodontol; 2000; 71: 1287-1296.
126. Pauw, M.T.V.d., T.V.d. Bos, V. Everts, and W. Beertsen, "Enamel matrix‐derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor β1 release of periodontal ligament and gingival fibroblasts" J Periodontol; 2000; 71: 31-43.
127. Miron, R.J., M. Fujioka Kobayashi, D. Buser, Y. Zhang, D.D. Bosshardt, and A. Sculean, "Combination of collagen barrier membrane with enamel matrix derivative-liquid improves osteoblast adhesion and differentiation" Int J Oral Maxillofac Implants; 2017; 32: 196-203.
128. 丁嘉展(2010)。電紡成形條件對紡絲之形貌與直徑之影響。國立交通大學機械工程學系碩士學位論文,頁41-46。
129. Tsai, C.C., R.N. Huang, H.W. Sung, and H.C. Liang, "In vitro evaluation of the genotoxicity of a naturally occurring crosslinking agent (genipin) for biologic tissue fixation" J Biomed Mater Res; 2000; 52: 58-65.
130. Bernal Ballen, A., J.A. Lopez Garcia, and K. Ozaltin, "(PVA/chitosan/fucoidan)-ampicillin: a bioartificial polymeric material with combined properties in cell regeneration and potential antibacterial features" Polymers (Basel); 2019; 11: 1-14.
131. Zheng, H., Y. Du, J. Yu, R. Huang, and L. Zhang, "Preparation and characterization of chitosan/poly(vinyl alcohol) blend fibers" J Appl Polym Sci; 2001; 80: 2558-2565.
132. Ren, D., Q. Wang, Y. Yang, Y. Hu, Y. Song, Y. He, S. Liu, and L. Wu, "Hypolipidemic effects of fucoidan fractions from saccharina sculpera (laminariales, phaeophyceae)" Int J Biol Macromol; 2019; 140: 188-195.
133. Rangel-Rodriguez, A.M., S. Conxita, V. Susana, S.G. Flores-Gallardo, J.C. Contreras-Esquivel, and L. Licea-Jimenez, "Immobilization of pectinesterase in genipin-crosslinked chitosan membrane for low methoxyl pectin production" Appl Biochem Biotechnol; 2014; 174: 2941-2950.
134. Qasim, S.B., S. Najeeb, R.M. Delaine Smith, A. Rawlinson, and I. Ur Rehman, "Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration" Dent Mater; 2017; 33: 71-83.
135. Bazmandeh, A.Z., E. Mirzaei, Y. Ghasemi, and M.A.J. Kouhbanani, "Hyaluronic acid coated electrospun chitosan-based nanofibers prepared by simultaneous stabilizing and coating" Int J Biol Macromol; 2019; 138: 403-411.
136. Severyukhina, A.N., N.V. Petrova, K. Smuda, G.S. Terentyuk, B.N. Klebtsov, R. Georgieva, H. Baumler, and D.A. Gorin, "Photosensitizer-loaded electrospun chitosan-based scaffolds for photodynamic therapy and tissue engineering" Colloids Surf B; 2016; 144: 57-64.
137. Lai, J.Y., Y.T. Li, and T.P. Wang, "In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers" Int J Mol Sci; 2010; 11: 5256-5272.
138. Su, W.T., Y.T. Wang, and C.M. Chou, "Optimal fluid flow enhanced mineralization of MG-63 cells in porous chitosan scaffold" J Taiwan Inst Chem Eng; 2014; 45: 1111-1118.
139. Lu, H.T., T.W. Lu, C.H. Chen, and F.L. Mi, "Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering" Int J Biol Macromol; 2019; 128: 973-984.
140. Li, Y., Y.Q. Chi, C.H. Yu, Y. Xie, M.Y. Xia, C.L. Zhang, X. Han, and Q. Peng, "Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both gram-negative and gram-positive bacteria" Carbohydr Polym; 2020; 241: 1-9.
141. Sudarshan, N.R., D.G. Hoover, and D. Knorr, "Antibacterial action of chitosan" Food Biotechnol; 1992; 6: 257-272.
142. Tsai, G.J., W.H. Su, H.C. Chen, and C.L. Pan, "Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation" Fish Sci; 2008; 68: 170-177.
143. Wang, G. and A. Fakhri, "Preparation of CuS/polyvinyl alcohol-chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G- bacteria" Int J Biol Macromol; 2020; 155: 36-41.

無法下載圖示 全文公開日期 2025/08/19 (校內網路)
全文公開日期 2025/08/19 (校外網路)
全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE