簡易檢索 / 詳目顯示

研究生: 沈東翰
Dong-Han Shen
論文名稱: 絕緣閘極雙極性電晶體之設計
Design of Insulating Gate Bipolar Transistor
指導教授: 莊敏宏
Miin-Horng Juang
口試委員: 張勝良
Sheng-Lyang Jang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 109
中文關鍵詞: 絕緣閘極雙極性電晶體自我對準式閂鎖免疫力絕緣矽基板退位井
外文關鍵詞: power devices, self-aligned silicid
相關次數: 點閱:270下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年以來,由於通訊產品和平面顯示器的推陳出新,使得功率元件的需求量大幅增加。為了順應電路積體化的潮流,將功率元件與低壓電路整合在同一晶片上,傳統垂直式的絕緣閘極雙極性電晶體元件結構必須改成橫向式的設計,而在這之中,一般可用的元件為薄膜絕緣閘極雙極性電晶體元件,其係於絕緣矽基板上實現。本論文完成垂直溝渠式的絕緣閘雙極性電晶體在於傳統式以及自我對準式的製程比較;且對於橫向式的絕緣閘極雙極性電晶體而言,為了改善閂鎖效應,提出不同的通道雜質分佈。
在本論文中,將經由模擬來探討絕緣閘極雙極性電晶體,針對垂直溝渠式的絕緣閘極雙極性電晶體,利用自我對準式以簡化製程步驟,不僅減少光罩使用量,並且減省成本。在電性上,例如:崩潰電壓、漏電流、和關閉時間,沒有改變。另外,由於自我對準式的 n+ source 寬度較傳統式的短,以致於導通電流略小,也因為如此,自我對準式在閂鎖免疫力比傳統式較佳。
為了與積體電路做整合和改善閂鎖免疫力,提出橫向式的絕緣閘極雙極性電晶體,分別在矽基板以及絕緣矽基板上實現。結果可發現,當 p-well 使用退位井結構時,可改善崩潰電壓、漏電流、導通電流,閂鎖免疫力等電性,該退位井是利用高能量的方式植入離子於晶片中,經由數小時的退火,而形成表面濃度低且基底中濃度高之雜質分佈。


In recent years, following the introducing of state of the art flat panel displays and communication products, demands for power devices have risen substantially. In keeping with the trend of integration circuit, conventional vertical device needs to be changed to lateral structure to make it possible for the integration of power devices and low voltage circuit on the same chip. The available used lateral power device is Thin film Lateral Insulated Gate Bipolar Transistor (TLIGBT) device, which is used to Silicon On Insulator (SOI) platform. Formation of vertical trench-type insulated gate bipolar transistors (IGBT’s) by using a self-aligned silicided scheme as compared with conventional non-self-aligned type, which is the different process in this dissertation. In order to improve the latch-up immunity, a lateral IGBT has been proposed which has two types. The same type which is also applies on thin film structure.
In this thesis, IGBTs were studied by using Tsuprem-4 and MEDICI simulation. Formation of vertical trench-type insulated gate bipolar transistors (IGBT’s) by using a self-aligned silicided scheme has been proposed to simplify the fabrication process, Not only reducing the mask steps, but also economizing the cost. For both the conventional process and the self-aligned scheme, no considerable difference is found with respect to the forward blocking voltage, the off-state leakage current, the latch-up triggering current density, and the turn-off time. By this self-aligned scheme, owing to a smaller n+ source, better latch-up immunity is obtained while very little degradation of on-state voltage drop is caused.
In keeping with the trend of integration circuit and latch-up immunity, lateral IGBT has been commonly used. By using the retrograde scheme, a relatively lower surface dopant concentration and a relatively higher bulk dopant concentration are simultaneously caused, which significantly improve the latch-up immunity.

Abstract(Chinese)................................................................................ I Abstract ……………………………...…………………………………………….III Acknowledgement (Chinese) V Contents …………………………...…………….…………………..……………VII Figure Captions IX Table List………...…………………………………………………………………XVI Chapter 1 Introduction 1 1-1 Device application 1 1-2 The Basic Structure of IGBT 2 1-3 Motivation 3 1-4 Thesis Organization 3 Chapter 2 Device scheme 7 2-1 Trench-Gate Insulated Gate Bipolar Transistor 7 2-2 Bulk Lateral Insulated Gate Bipolar Transistor (BLIGBT) 19 2-3 Thin film Lateral Insulated Gate Bipolar Transistor (TLIGBT) 27 Chapter 3 Results and Discussion 47 3-1 Electrical characteristics of the trench-gate Insulated Gate Bipolar Transistor 47 3-2 Electrical characteristics of the bulk lateral Insulated Gate Bipolar Transistor 55 3-3 Electrical characteristics of the thin film lateral Insulated Gate Bipolar Transistor 62 3-3-1 The influence of p-well implantation for long n- drift region by conventional type thin film lateral Insulated Gate Bipolar Transistor. 62 3-3-2 Electrical characteristics for different p-well profile at long n- drift region thin film lateral Insulated Gate Bipolar Transistor. 68 3-3-3 Electrical characteristics for different p-well profile at short n- drift region thin film lateral Insulated Gate Bipolar Transistor. 81 Chapter 4 Conclusion 88 Reference……………………………………………………………………………..90 Vita (Chinese) 92

[1] B. J. Baliga, “Power Semiconductor Device”. Boston, M.A: PWS, Chapter8, pp.426-431, 1955.
[2] N. Mohan, T. M. Undeland, W. P. Robbins, “Power Electronics: Converters, Applications, and Design”, pp3-5, pp593-606, 1989.
[3] B. J. Baliga, “Trends in Power Semiconductor Device”, IEEE Trans. Electron Device, vol.43, p1717~p1730, 1996
[4] B. J. Baliga, “Enhancement – and Depletion-Mode Vertical-Channel M.O.S. Gated Thyristors,” Electron. Lett., vol.15,645(1979)
[5] J. D. Plummer and B.W. Scharf, “Insulated-Gate Planar Thyristors: I-Structure and Basic Operation,” IEEE Trans. Electron Dev., ED-27, 380 (1980)
[6] L.Leipold, W.Baumgartner, W. Ladenhauf, and J. P. Stengl, “A FET-Controlled Thyristor in SIPMOS Technology,” Tech .Dig. IEEE IEDM, vol.79 (1980)
[7] J. Tihanyi, “Functional Integration of Power MOS and Bipolar Devices,” Tech. Dig. IEEE IEDM, vol.75 (1980)
[8] R. De Magle, P. Austin, L. Mussard, J. L. Sanchez, M. Elghazouani, F. Richardeau, and J. L. Schanen, "A trench IGBT distributed model with thermo-sensible parameters," in 2005 European Conference on Power Electronics and Applications, Dresden, 2005.
[9] S. Kyoung, J. S. Lee, S. H. Kwak, E. G. Kang, and M. Y. Sung, "A novel trench IGBT with a deep P+ layer beneath the trench emitter," IEEE Electron Device Letters, vol. 30, pp. 82-84, 2009.
[10] J. I. Lee, J. Choi, Y. S. Bae, and M. Y. Sung, "A novel trench IGBT with a rectangular oxide beneath the trench gate," in 2009 1st Asia Symposium on Quality Electronic Design, ASQED 2009, Kuala Lumpur, 2009, pp. 370-373.
[11] L. Yang, K. Li, and D. Wu, "Analysis and characterization of a new trench IGBT with improved layers," in 2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008, Singapore, 2008, pp. 2503-2506.
[12] H. R. Chang and B. J. Baliga, “500V n-Channel Insulated Gate Bipolar Transistor with a Trench Gate Structure”, IEEE Trans on Electron Device, vol.36, NO.9, 1989.
[13] R. Tadikonda, S. Hardikar, D. W. Green, M. Sweet, and E. M. S. Narayanan, "Analysis of lateral IGBT with a variation in lateral doping drift region in junction isolation technology," IEEE Transactions on Electron Devices, vol. 53, pp. 1740-1744, 2006.
[14] M. Darwish and K. Board, “Lateral resurfed COMFET,” Electron. Lett., vol. 20, no. 12, pp. 519–520, Jun. 1984.
[15] D. N. Pattanayak, A. L. Robinson, T. P. Chow, M. S. Adler, B. J. Baliga, and E. J. Wildi, " n-channel lateral insulated gate transistors—Part I: Steady state characteristics," IEEE Transactions on Electron Devices ED-33, 1956-1963 (1986).
[16] A. L. Robinson, D. N. Pattanayak, M. S. Adler, B. J. Baliga, and E. J. Wildi, " Lateral insulated gate transistors with improved latching characteristics," International Electron Devices Meeting(IEEE, Washington, DC, USA, 1985), pp. 744-747.
[17] T. P. Chow, D. N. Pattanayak, B. J. Baliga, and M. S. Adler, “Latching in lateral insulated gate bipolar transistors,” IEDM Tech. Dig., 1987, pp. 774–777.
[18] E. Arnold, "Silicon-on-insulator devices for high voltage and power IC applications," Journal of the Electrochemical Society, vol.141, 1983-1988 (1994).
[19] E. Arnold, H. Pein, and S. P. Herko, "Comparison of self-heating effects in bulk-silicon and SOI high-voltage devices," Technical Digest - International Electron Devices Meeting(IEEE, San Francisco, CA, USA, 1994), pp. 813-816.
[20] W. Chen, G. Xie, B. Zhang, and Z. Li, "Novel lateral IGBT with n-region controlled anode on SOI substrate," Journal of Semiconductors, vol. 30, 2009.
[21] W. Chen, G. Xie, B. Zhang, Z. Li, and M. Zhao, "Fast speed lateral IGBT with buried N-region controlled anode on SOI substrate," in 2009 IEEE International Conference on Electron Devices and Solid-State Circuits, EDSSC 2009, Xi'an, 2009, pp. 372-375.
[22] M. H. Juang, and H. C. Cheng, "Effects of rapid thermal annealing on the formation of shallow p+ n junction by implanting BF2+ ions into thin metal films on Si substrate. II. Thin cobalt films," Journal of Applied Physics, vol.71, 1271-1276 (1992).

無法下載圖示 全文公開日期 2015/06/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE